設(shè)F1,F(xiàn)2分別是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),若雙曲線右支上存在一點(diǎn)P,使|OP|=|OF1|(O為原點(diǎn)),且|PF1|=
3
|PF2|,則雙曲線的離心率為______.
∵|OF1|=|OF2|=|OP|
∴∠F1PF2=90°
設(shè)|PF2|=t,則|F1P|=
3
t,a=
3
t-t
2

∴t2+3t2=4c2
∴t=c
∴e=
c
a
=
3
+1.
故答案為:
3
+1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若雙曲線
x2
16
-
y2
m
=1
的焦距為10,則雙曲線的漸近線方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1、F2是雙曲線
x2
16
-
y2
20
=1
的左右焦點(diǎn),點(diǎn)P在雙曲線上,若點(diǎn)P到左焦點(diǎn)F1的距離等于9,則點(diǎn)P到右準(zhǔn)線的距離( 。
A.
2
3
B.
34
3
C.
2
3
34
3
D.
51
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

雙曲線C:x2-y2=2右支上的弦AB過右焦點(diǎn)F.
(1)求弦AB的中點(diǎn)M的軌跡方程
(2)是否存在以AB為直徑的圓過原點(diǎn)O?若存在,求出直線AB的斜率K的值.若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦點(diǎn)F2作PF2⊥F1F2,交雙曲線于P,若|PF2|=|F1F2|,則雙曲線的離心率等于( 。
A.2B.
1
2
C.
2
+1
D.
2
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)雙曲線的-個(gè)焦點(diǎn)為F;虛軸的一個(gè)端點(diǎn)為B,如果直線FB與該雙曲線的一條漸近線垂直,那么此雙曲線的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線l:x+by+2=0與雙曲線
x2
4
-
y2
3
=1
只有一個(gè)公共點(diǎn),則直線l有(  )
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)集合A={(x,y)|x2-
y2
36
=1},B={(x,y)|y=3x}
,則A∩B的子集的個(gè)數(shù)是( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

關(guān)于雙曲線
x2
9
-
y2
16
=-1,有以下說法:
①實(shí)軸長為6;
②雙曲線的離心率是
5
4
;
③焦點(diǎn)坐標(biāo)為(±5,0);
④漸近線方程是y=±
4
3
x,
⑤焦點(diǎn)到漸近線的距離等于3.
正確的說法是______.(把所有正確的說法序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊答案