已知數(shù)列{an}滿足:an=logn+1(n+2),n∈N+,我們把使a1•a2•…•ak為整數(shù)的數(shù)k(k∈N*)叫做數(shù)列{an}的理想數(shù).給出下列關(guān)于數(shù)列{an}的幾個(gè)結(jié)論:
①數(shù)列{an}的最小理想數(shù)是2.
②{an}的理想數(shù)k的形式可以表示為k=4n-2(n∈N+).
③對(duì)任意n∈N+,有an+1<an
數(shù)學(xué)公式
其中正確結(jié)論的序號(hào)為_(kāi)_______.

①③
分析:由,知a1•a2•…•ak=log2(n+2).log2(n+2)為整數(shù)的最小的n=2,數(shù)列{an}的最小理想數(shù)是2.{an}的理想數(shù)k的形式可以表示為k=2n-1,對(duì)任意n∈N*,有an+1<an=1,故正確結(jié)論的序號(hào)為①③.
解答:,
∴a1•a2•…•ak=log2(n+2).
∵k∈N*,∴l(xiāng)og2(n+2)為整數(shù)的最小的n=2,數(shù)列{an}的最小理想數(shù)是2.故①正確;
{an}的理想數(shù)k的形式可以表示為k=2n-1,故②不成立;
對(duì)任意n∈N*,有an+1<an.故③成立;
=1,故④不成立.
故正確答案為①③.
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要注意公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案