已知數(shù)列{an}的前n項(xiàng)和為Sn=3n-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn= (Sn+1),求數(shù)列{bnan}的前n項(xiàng)和Tn.
(1)an=2×3n-1(2)-,n∈N*
【解析】(1)當(dāng)n=1時,a1=S1=2,
當(dāng)n≥2時,an=Sn-Sn-1=(3n-1)-(3n-1-1)=2×3n-1,綜上所述,an=2×3n-1.
(2)bn= (Sn+1)=3n=-n,所以bnan=-2n×3n-1,
Tn=-2×1-4×31-6×32-…-2n×3n-1,
3Tn=-2×31-4×32-…-2(n-1)×3n-1-2n×3n,相減,得
-2Tn=-2×1-2×31-2×32-…-2×3n-1+2n×3n
=-2×(1+31+32+…+3n-1)+2n×3n,
所以Tn=(1+31+32+…+3n-1)-n×3n=-n×3n=-,n∈N*
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第2課時練習(xí)卷(解析版) 題型:填空題
α、β、γ是三個平面,a、b是兩條直線,有下列三個條件:①a∥γ,bβ;②a∥γ,b∥β;③b∥β,aγ.如果命題“α∩β=a,bγ,且________,則a∥b”為真命題,則可以在橫線處填入的條件是________(填序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第6課時練習(xí)卷(解析版) 題型:解答題
設(shè){an}是首項(xiàng)為a,公差為d的等差數(shù)列(d≠0),Sn是其前n項(xiàng)和.記bn=,n∈N*,其中c為實(shí)數(shù).
(1)若c=0,且b1,b2,b4成等比數(shù)列,證明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差數(shù)列,證明:c=0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第5課時練習(xí)卷(解析版) 題型:解答題
已知數(shù)列{an}是首項(xiàng)為1,公差為d的等差數(shù)列,數(shù)列{bn}是首項(xiàng)為1,公比為q(q>1)的等比數(shù)列.
(1)若a5=b5,q=3,求數(shù)列{an·bn}的前n項(xiàng)和;
(2)若存在正整數(shù)k(k≥2),使得ak=bk.試比較an與bn的大小,并說明理由..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第4課時練習(xí)卷(解析版) 題型:解答題
已知等差數(shù)列{an}是遞增數(shù)列,且滿足a4·a7=15,a3+a8=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=(n≥2),b1=,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第4課時練習(xí)卷(解析版) 題型:解答題
求下面各數(shù)列的前n項(xiàng)和:
(1) ,…
(2) ,…
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第4課時練習(xí)卷(解析版) 題型:填空題
在數(shù)列{an}中,若a1=1,an+1=an+2(n≥1),則該數(shù)列的通項(xiàng)an=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第3課時練習(xí)卷(解析版) 題型:填空題
已知兩個數(shù)k+9和6-k的等比中項(xiàng)是2k,則k=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第9課時練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=,x∈[-1,8],函數(shù)g(x)=ax+2,x∈[-1,8],若存在x∈[-1,8],使f(x)=g(x)成立,則實(shí)數(shù)a的取值范圍是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com