給出四個(gè)命題:
①各側(cè)面都是正方形的棱柱一定是正棱柱;
②各對角面是全等矩形的平行六面體一定是長方體;
③有兩個(gè)側(cè)面垂直于底面的棱柱一定是直棱柱;
④長方體一定是正四棱柱.
其中正確命題的個(gè)數(shù)是( 。
A、0B、1C、2D、3
考點(diǎn):棱柱的結(jié)構(gòu)特征
專題:空間位置關(guān)系與距離
分析:利用正棱柱、長方體、直棱柱的概念求解.
解答: 解:各側(cè)面都是正方形的棱柱不一定是正棱柱,
因?yàn)楦飨噜弬?cè)面并不一定互相垂直.
比如這樣一個(gè)四棱柱:各側(cè)面都是正方形,
但底面是不是正方形而是菱形,
此時(shí)這個(gè)四棱柱就不是正四棱柱,故①錯(cuò)誤;
由長方體的性質(zhì)知:各對角面是全等矩形的平行六面體一定是長方體,故②正確;
有兩個(gè)側(cè)面垂直于底面的棱柱一定是直棱柱,
必須是兩個(gè)相鄰的側(cè)面垂直于底面的棱柱才為直棱柱,故③錯(cuò)誤;
長方體的底邊不一定相等,所以長方體不一定是正四棱柱,故④錯(cuò)誤.
故選:B.
點(diǎn)評:本題考查命題真假的判斷,是基礎(chǔ)題,解題時(shí)要注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=-
1
3
x3+
1
2
x2+2ax
,若f(x)在(
2
3
,+∞)上存在單調(diào)遞增區(qū)間,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用輾轉(zhuǎn)相除法或更相減損術(shù)求得8251與6105的最大公約數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

按照如圖的程序框圖執(zhí)行,則輸出的A值為( 。
A、255B、257
C、511D、513

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=xex-a有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A、-
1
e
<a<0
B、a>-
1
e
C、-e<a<0
D、0<a<e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2-ax+b的兩個(gè)零點(diǎn)是2和3,則函數(shù)g(x)=bx2-ax-1的零點(diǎn)是( 。
A、-1和
1
6
B、1和-
1
6
C、
1
2
1
3
D、-
1
2
和-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的單調(diào)函數(shù),且對于任意x1、x2∈R都有f(x1+x2)=f(x1)•f(x2),若g(x)=log2f(x),則g(x)的圖象可以是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,可表示函數(shù)圖象的是(  ) 
A、①B、②③④C、①③④D、②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,等腰梯形ABCD中,AD∥BC,AD=
1
2
BC,AB=AD,∠ABC=60°,E是BC的中點(diǎn),如圖2,將△ABE沿AE折起,使面BAE⊥面AECD,連接BC,BD,P是棱BC上的中點(diǎn).
(1)求證:AE⊥BD;
(2)若AB=2,求三棱錐B-AEP的體積.

查看答案和解析>>

同步練習(xí)冊答案