分析 問題轉(zhuǎn)化為|x+t|≥|$\sqrt{2}$x|在[t,t+2]恒成立,去掉絕對值,得到關(guān)于t的不等式,求出t的范圍即可.
解答 解:f(x)=x2,x∈[t,t+2],
不等式f(x+t)≥2f(x)=f($\sqrt{2}$x)在[t,t+2]恒成立,
即|x+t|≥|$\sqrt{2}$x|在[t,t+2]恒成立,
即:x≤(1+$\sqrt{2}$)t在[t,t+2]恒成立,
或x≤(1-$\sqrt{2}$)t在[t,t+2]恒成立,
解得:t≥$\sqrt{2}$或t≤-$\sqrt{2}$,
故答案為:(-∞,-$\sqrt{2}$]∪[$\sqrt{2}$,+∞).
點(diǎn)評 本題考查了函數(shù)恒成立問題及函數(shù)的奇偶性,難度適中,關(guān)鍵是掌握函數(shù)的單調(diào)性與奇偶性.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\frac{4\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-∞,-\frac{4}{3}}]$ | B. | $({-∞,\frac{3}{4}})$ | C. | $[{-\frac{3}{4},+∞})$ | D. | $[{-\frac{4}{3},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com