5.已知復數(shù)z滿足(z-1)i=1+i,則z的共軛復數(shù)為( 。
A.-2-iB.-2+iC.2-iD.2+i

分析 把已知的等式變形,然后利用復數(shù)代數(shù)形式的乘除運算化簡,再由共軛復數(shù)的概念得答案.

解答 解:由(z-1)i=1+i,得z-1=$\frac{1+i}{i}=\frac{(1+i)(-i)}{-{i}^{2}}=1-i$,
∴z=2-i,則$\overline{z}=2+i$.
故選:D.

點評 本題考查復數(shù)代數(shù)形式的乘除運算,考查了共軛復數(shù)的概念,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.在平面直角坐標系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=6+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(其中t為參數(shù)).現(xiàn)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=6cosθ.
(Ⅰ) 寫出直線l普通方程和曲線C的直角坐標方程;
(Ⅱ) 過點M(-1,0)且與直線l平行的直線l1交C于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設(shè)關(guān)于x的方程x2-mx-1=0有兩個實根α,β,α<β,函數(shù)f(x)=$\frac{2x-m}{{x}^{2}+1}$.若λ,μ均為正實數(shù),則|f($\frac{λα+μβ}{λ+μ}$)-f($\frac{μα+λβ}{λ+μ}$)|(  )|α-β|
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知點P(a,b)與點Q(1,0)在直線2x-3y+1=0的兩側(cè),給出下列命題:
①2a-3b+1>0;   ②a≠0時,$\frac{a}$有最小值,無最大值;
③存在正實數(shù)m,使得$\sqrt{{a}^{2}+^{2}}$>m恒成立;
④a>0且a≠1,b>0時,則$\frac{a-1}$的取值范圍是(-∞,-$\frac{1}{3}$)∪($\frac{2}{3}$,+∞).
其中正確的命題是( 。
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖,根據(jù)以上程序,可求得f(-1)+f(2)=( 。
A.-1B.0C.$\frac{17}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)$f(x)=\frac{3cosx+1}{2-cosx}(-\frac{π}{3}<x<\frac{π}{3})$,則f(x)的值域為$(\frac{5}{3},4]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=sin(2x+φ)(其中0<φ<π)滿足f(-x)=f(x),則( 。
A.f(x)在$(0,\frac{π}{2})$單調(diào)遞減B.f(x)在$(\frac{π}{4},\frac{3π}{4})$單調(diào)遞減
C.f(x)在$(0,\frac{π}{2})$單調(diào)遞增D.f(x)在$(\frac{π}{4},\frac{3π}{4})$單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)復數(shù)z1,z2在復平面內(nèi)的對應點關(guān)于虛軸對稱,z1=2+ai,z1z2=-4,則a=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在單位圓x2+y2=1中(含邊界)任取一點M,則點M落在第一象限的概率是$\frac{1}{4}$.

查看答案和解析>>

同步練習冊答案