分析 通項公式Tr+1=$(\frac{1}{2})^{9-r}$(-1)r${∁}_{9}^{r}$${x}^{\frac{3}{2}r-9}$,令$\frac{3}{2}r-9$=0,解得r即可得出.
解答 解:通項公式Tr+1=${∁}_{9}^{r}(\frac{1}{2x})^{9-r}(-\sqrt{x})^{r}$=$(\frac{1}{2})^{9-r}$(-1)r${∁}_{9}^{r}$${x}^{\frac{3}{2}r-9}$,
令$\frac{3}{2}r-9$=0,解得r=6,
∴常數(shù)項為$(\frac{1}{2})^{3}$${∁}_{9}^{6}$=$\frac{21}{2}$.
故答案為:$\frac{21}{2}$.
點評 本題考查了二項式定理的應(yīng)用,考查了推理能力與計算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{π}$ | B. | $-\sqrt{π}$ | C. | $\frac{{\sqrt{π}}}{2π}$ | D. | $\frac{{\sqrt{2π}}}{2π}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,1) | B. | (-2,1] | C. | [-3,3) | D. | (-3,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{7π}{4}$ | B. | -$\frac{3π}{4}$ | C. | -$\frac{π}{4}$ | D. | $\frac{5π}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com