已知(1+x+x2)(x+
1x3
n(n∈N+)的展開式中沒有常數(shù)項(xiàng),且2≤n≤8,則n=
5
5
分析:要想使已知展開式中沒有常數(shù)項(xiàng),需(x+
1
x3
n(n∈N+)的展開式中無常數(shù)項(xiàng)、x-1項(xiàng)、x-2項(xiàng),利用(x+
1
x3
n(n∈N+)的通項(xiàng)公式討論即可.
解答:解:設(shè)(x+
1
x3
n(n∈N+)的展開式的通項(xiàng)為Tr+1,則Tr+1=
C
r
n
xn-r•x-3r=
C
r
n
•xn-4r,2≤n≤8,
當(dāng)n=2時,若r=0,(1+x+x2)(x+
1
x3
n(n∈N+)的展開式中有常數(shù)項(xiàng),故n≠2;
當(dāng)n=3時,若r=1,(1+x+x2)(x+
1
x3
n(n∈N+)的展開式中有常數(shù)項(xiàng),故n≠3;
當(dāng)n=4時,若r=1,(1+x+x2)(x+
1
x3
n(n∈N+)的展開式中有常數(shù)項(xiàng),故n≠4;
當(dāng)n=5時,r=0、1、2、3、4、5時,(1+x+x2)(x+
1
x3
n(n∈N+)的展開式中均沒有常數(shù)項(xiàng),故n=5適合題意;
當(dāng)n=6時,若r=1,(1+x+x2)(x+
1
x3
n(n∈N+)的展開式中有常數(shù)項(xiàng),故n≠6;
當(dāng)n=7時,若r=2,(1+x+x2)(x+
1
x3
n(n∈N+)的展開式中有常數(shù)項(xiàng),故n≠7;
當(dāng)n=8時,若r=2,(1+x+x2)(x+
1
x3
n(n∈N+)的展開式中有常數(shù)項(xiàng),故n≠2;
綜上所述,n=5時,滿足題意.
故答案為:5.
點(diǎn)評:本題考查二項(xiàng)式定理,考查二項(xiàng)展開式的通項(xiàng)公式,突出考查分類討論思想的應(yīng)用,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知(1-x+x25=a10x10+a9x9+…+a1x+a0,則(a1+a3+a5+a7+a92-(a0+a2+a4+a6+a8+a102=
-243
-243

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+x+x2n=a0+a1x+…+a2nx2n
(1)求a0+a2+…+a2n的值   (2)求a1+2a2+…+2na2n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知(1-x+x25=a10x10+a9x9+…+a1x+a0,則(a1+a3+a5+a7+a92-(a0+a2+a4+a6+a8+a102=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省鹽城市鹽阜中學(xué)高三最后一次模擬數(shù)學(xué)試卷(解析版) 題型:解答題

已知(1+x+x2n=a+a1x+…+a2nx2n
(1)求a+a2+…+a2n的值   (2)求a1+2a2+…+2na2n的值.

查看答案和解析>>

同步練習(xí)冊答案