已知f(α)=
1+cos2α
1
tan
α
2
-tan
α
2
,α∈(0,
π
2
)
,則f(α)取得最大值時(shí)α的值是( 。
分析:利用正切函數(shù)的半角公式與余弦函數(shù)的二倍角公式可將f(α)化簡(jiǎn)為f(α)=
1
2
sin2α,又α∈(0,
π
2
),從而可得f(α)取得最大值時(shí)α的值.
解答:解:∵tan
α
2
=
sinα
1+cosα
=
1-cosα
sinα
,
1
tan
α
2
-tan
α
2
=
1+cosα
sinα
-
1-cosα
sinα
=
2cosα
sinα
,又1+cos2α=2cos2α,
∴f(α)=
2cos2α•sinα
2cosα
=sinα•cosα=
1
2
sin2α,
又α∈(0,
π
2
),
∴α=
π
4
時(shí),f(α)取得最大值
1
2

故選D.
點(diǎn)評(píng):本題考查三角函數(shù)的化簡(jiǎn)求值,掌握正切函數(shù)的半角公式與余弦函數(shù)的二倍角公式是關(guān)鍵,考查應(yīng)用三角函數(shù)公式解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F(c,0)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn),以坐標(biāo)原點(diǎn)O為圓心,a為半徑作圓P,過(guò)F垂直于x軸的直線與圓P交于A,B兩點(diǎn),過(guò)點(diǎn)A作圓P的切線交x軸于點(diǎn)M.若直線l過(guò)點(diǎn)M且垂直于x軸,則直線l的方程為
 
;若|OA|=|AM|,則橢圓的離心率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F(c,0)是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點(diǎn),若雙曲線C的漸近線與圓E:(x-c)2+y2=
1
2
c2
相切,則雙曲線C的離心率為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知F(c,0)是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn);⊙F:(x-c)2+y2=a2與x軸交于D,E兩點(diǎn),其中E是橢圓C的左焦點(diǎn).
(1)求橢圓C的離心率;
(2)設(shè)⊙F與y軸的正半軸的交點(diǎn)為B,點(diǎn)A是點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn),試判斷直線AB與⊙F的位置關(guān)系;
(3)設(shè)直線BF與⊙F交于另一點(diǎn)G,若△BGD的面積為4
3
,求橢圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知F(c,0)是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn);⊙F:(x-c)2+y2=a2與x軸交于D,E兩點(diǎn),其中E是橢圓C的左焦點(diǎn).
(1)求橢圓C的離心率;
(2)設(shè)⊙F與y軸的正半軸的交點(diǎn)為B,點(diǎn)A是點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn),試判斷直線AB與⊙F的位置關(guān)系;
(3)設(shè)直線AB與橢圓C交于另一點(diǎn)G,若△BGD的面積為
24
6
13
c
,求橢圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案