若方程
x2
25-k
+
y2
16+k
=1
表示的曲線為雙曲線,則實數(shù)k的取值范圍為
(-∞,-16)∪(25,+∞)
(-∞,-16)∪(25,+∞)
分析:由雙曲線方程的特點可得(25-k)(16+k)<0,解之可得.
解答:解:若方程
x2
25-k
+
y2
16+k
=1
表示的曲線為雙曲線,
則(25-k)(16+k)<0,即(k-25)(16+k)>0,
解得k<-16,或k>25,即k∈(-∞,-16)∪(25,+∞),
故答案為:(-∞,-16)∪(25,+∞)
點評:本題考查雙曲線的簡單性質(zhì),得出(25-k)(16+k)<0是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以下四個命題:
①已知A、B為兩個定點,若|PA|+|PB|=k(k為常數(shù)),則動點P的軌跡為橢圓.
②雙曲線
x2
25
-
y2
9
=1
與橢圓
x2
35
+y2=1
有相同的焦點.
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率.
④過定圓C上一定點A作圓的動弦AB,O為坐標(biāo)原點,若
OP
=
1
2
(
OA
+
OB
)
,則動點P的軌跡為橢圓;
其中真命題的序號為
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下三個關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個定點,K為非零常數(shù),若|PA|-|PB|=K,則動點P的軌跡是雙曲線.
②方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率
③雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點.
④已知拋物線y2=2px,以過焦點的一條弦AB為直徑作圓,則此圓與準(zhǔn)線相切
其中真命題為
②③④
②③④
(寫出所以真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C:
x2
25
+
y2
9
=1
的焦點為F1,F(xiàn)2,有下列研究問題及結(jié)論:
①曲線
x2
25-k
+
y2
9-k
=1 (k<9)
與橢圓C的焦點相同;
②一條拋物線的焦點是橢圓C 的短軸的端點,頂點在原點,則其標(biāo)準(zhǔn)方程為x2=±6y;
③若點P為橢圓上一點,且滿足
PF1
PF2
=0
,則|
PF1
+
PF2
|
=8.
則以上研究結(jié)論正確的序號依次是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個定點,k為非零常數(shù),|
PA
|-|
PB
|=k
,則動點P的軌跡為雙曲線;
②平面內(nèi)到兩定點距離之和等于常數(shù)的點的軌跡是橢圓
③若方程
x2
4-t
+
y2
t-1
=1
表示焦點在x軸上的橢圓,則1<t<
5
2

④雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1
有相同的焦點.
其中真命題的序號為
③、④
③、④
(寫出所有真命題的序號)

查看答案和解析>>

同步練習(xí)冊答案