如圖,在四棱錐中,平面,平面,

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的大。

【命題意圖】本題考查空間位置關(guān)系、二面角等有關(guān)知識(shí),考查空間想象能力,中等題.

【答案】(Ⅰ)證明:取BE的中點(diǎn)O,AE的中點(diǎn)F,連OC,OF,DF,則2OFBA

∵AB⊥平面BCE,CD⊥平面BCE,∴2CD BA,

∴OFCD,∴OC∥FD    

∵BC=CE,∴OC⊥BE,又AB⊥平面BCE.

∴OC⊥平面ABE. ∴FD⊥平面ABE.

從而平面ADE⊥平面ABE.     ………………6分

(Ⅱ)二面角A—EB—D與二面角F—EB—D相等,

由(Ⅰ)知二面角F—EB—D的平面角為∠FOD。

BC=CE=2, ∠BCE=1200,OC⊥BE得BO=OE=,OC=1,

∴OFDC為正方形,∴∠FOD=,

∴二面角A—EB—D的大小為.   ……………………12分

解法2:取BE的中點(diǎn)O,連OC.∵BC=CE, ∴OC⊥BE,又AB⊥平面BCE.

以O(shè)為原點(diǎn)建立如圖空間直角坐標(biāo)系O-xyz

則由已知條件有: ,,

設(shè)平面ADE的法向量為

則由·

·

可取

又AB⊥平面BCE,∴AB⊥OC,OC⊥平面ABE,

∴平面ABE的法向量可取為.

··=0, ∴,∴平面ADE⊥平面ABE.…… 6分

(Ⅱ)設(shè)平面BDE的法向量為,

則由·

·可取

∵平面ABE的法向量可取為

∴銳二面角A—EB—D的余弦值為=

∴二面角A—EB—D的大小為.          ……………………………12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

18、如圖,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且與底面ABCD垂直,底面ABCD是邊長為2的菱形,∠BAD=60°,N是PB中點(diǎn),過A、N、D三點(diǎn)的平面交PC于M.
(1)求證:DP∥平面ANC;
(2)求證:M是PC中點(diǎn);
(3)求證:平面PBC⊥平面ADMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且與底面ABCD垂直,底面ABCD是邊長為4的菱形,且∠BAD=60°,N是PB的中點(diǎn),過A,D,N的平面交PC于M,E是AD的中點(diǎn).
(1)求證:BC⊥平面PEB;
(2)求證:M為PC的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐中,側(cè)面

是正三角形,且與底面垂直,底面是邊長為2的菱形,,中點(diǎn),過、三點(diǎn)的平面交. 

(1)求證:;   (2)求證:中點(diǎn);(3)求證:平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

如圖,在四棱錐中,底面為菱形,,的中點(diǎn)。

   (1)點(diǎn)在線段上,,

試確定的值,使平面;

   (2)在(1)的條件下,若平面

面ABCD,求二面角的大小。

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

如圖,在四棱錐中,底面為菱形,,的中點(diǎn)。

   (1)點(diǎn)在線段上,,

試確定的值,使平面;

   (2)在(1)的條件下,若平面

面ABCD,求二面角的大小。

查看答案和解析>>

同步練習(xí)冊答案