已知數(shù)1,3,6,……的各項由一個等比數(shù)列與一個首項為0的等差數(shù)列的對應(yīng)項相加而得到.

(Ⅰ)求這個數(shù)列的前n項和

(Ⅱ)求的值.

答案:
解析:

  解:(Ⅰ)記數(shù)列1,3,6,…為,其中,等比數(shù)列為,公比為q;

  等差數(shù)列為,公差為d,則(n∈N).

  依題意,,①

  ,②

  ,③

  由①②③得 d=1,q=2,∴

  ∴

   =(1+2+…+)+[0+1+…+(n-1)]

   =

  (Ⅱ)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)集A={a1,a2,…,an}(1≤a1<a2<…<an,n≥2)具有性質(zhì)P:對任意的i,j(1≤i≤j≤n),aiaj
ajai
兩數(shù)中至少有一個屬于A.
(1)分別判斷數(shù)集{1,3,4}與{1,2,3,6}是否具有性質(zhì)P,并說明理由;
(2)求a1的值;當(dāng)n=3時,數(shù)列a1,a2,a3是否成等比數(shù)列,試說明理由;
(3)由(2)及通過對A的探究,試寫出關(guān)于數(shù)列a1,a2,…,an的一個真命題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)集A={a1,a2,a3,…,an},記和ai+aj(1≤i<j≤n)中所有不同值的個數(shù)為M(A).如當(dāng)A={1,2,3,4}時,由1+2=3,1+3=4,1+4=2+3=5,2+4=6,3+4=7,得M(A)=5.若A=1,2,3,…,n,則M(A)=
2n-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)集A={a1,a2,…,an}(1=a1<a2<…<an,n≥4)具有性質(zhì)P:對任意的k(2≤k≤n),?i,j(1≤i≤j≤n),使得ak=ai+aj成立.
(Ⅰ)分別判斷數(shù)集{1,2,4,6}與{1,3,4,7}是否具有性質(zhì)P,并說明理由;
(Ⅱ)求證:a4≤2a1+a2+a3;
(Ⅲ)若an=72,求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}:a1a2,…,an(0≤a1≤a2…≤an),n≥3時具有性質(zhì)P:對任意的i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個是該數(shù)列中的一項,現(xiàn)給出以下四個命題:
①數(shù)列0,1,3具有性質(zhì)P;         ②數(shù)列0,2,4,6具有性質(zhì)P;
③數(shù)列{an}具有性質(zhì)P,則a1=0;    ④若數(shù)列a1,a2,a3(0≤a1<a2<a3)具有性質(zhì)P,則a1+a3=2a2
其中真命題的序號為
②③④
②③④
.(所有正確命題的序號都寫上)

查看答案和解析>>

同步練習(xí)冊答案