命題“?x∈R,使得|x|<1”的否定是(  )
A、?x∈R,都有|x|<1
B、?x∈R,都有|x|<1
C、?x∈R,都有x≤-1或x≥1
D、?x∈R,都有|x|≥1
考點:命題的否定
專題:簡易邏輯
分析:直接利用特稱命題的否定是全稱命題寫出結(jié)果即可.
解答: 解:因為特稱命題的否定是全稱命題,所以,命題“?x∈R,使得|x|<1”的否定是:?x∈R,都有?x∈R,都有|x|≥1.
故選:D.
點評:本題考查特稱命題與全稱命題的否定關(guān)系,基本知識的考查.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)k是一個正整數(shù),(1+
x
k
k的展開式中第四項的系數(shù)為
1
16
,記函數(shù)y=x2與y=kx的圖象所圍成的陰影部分為S,任取x∈[0,4],y∈[0,16],則點(x,y)恰好落在陰影區(qū)域內(nèi)的概率為(  )
A、
17
96
B、
5
32
C、
1
6
D、
7
48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點F(-c,0)作圓x2+y2=a2的切線,切點為E,延長FE交拋物線y2=4cx于點P,O為坐標原點,若
OE
=
1
2
OF
+
OP
),則雙曲線的離心率為( 。
A、
1+
5
2
B、
5
2
C、
1+
3
2
D、
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
3x-1
x-1
的值域是(-∞,0]∪[4,+∞),則f(x)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,若∠A=45°,∠A、∠B、∠C成等差數(shù)列.求
bsinB
c
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文科) 已知點P、Q是△ABC所在平面上的兩個定點,且滿足
PA
+
PC
=
0
,2
QA
+
QB
+
QC
=
BC
,若|
PQ
|=λ|
BC
|
,則正實數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在2014年APEC會議期間,北京某旅行社為某旅行團包機去旅游,其中旅行社的包機費為12000元,旅行團中每人的飛機票按以下方式與旅行社結(jié)算:若旅行團的人數(shù)在30人或30人以下,每張機票收費800元;若旅行團的人數(shù)多于30人,則給予優(yōu)惠,每多1人,旅行團每張機票減少20元,但旅行團的人數(shù)最多不超過45人,當旅行社獲得的機票利潤最大時,旅行團的人數(shù)是( 。
A、32人B、35人
C、40人D、45 人

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某珠寶店丟了一件珍貴珠寶,以下四人中只有一人說真話,只有一人偷了珠寶.甲:我沒有偷;乙:丙是小偷;丙:丁是小偷;。何覜]有偷.根據(jù)以上條件,可以判斷偷珠寶的人是( 。
A、甲B、乙C、丙D、丁

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,a1=1,8a2+a5=0,數(shù)列{
1
an
}的前n項和為Sn,則
lin
n→+∞
Sn=(  )
A、2
B、1
C、
1
2
D、
2
3

查看答案和解析>>

同步練習冊答案