在數(shù)列{an}中,,當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),;則 等于         .

 

【答案】

20;

【解析】

試題分析:直接利用a1=2,當(dāng)n為奇數(shù)時(shí),;當(dāng)n為偶數(shù)時(shí),;把n=2,3,4,5直接代入分別求值即可得出結(jié)論解:因?yàn)閍1=2,當(dāng)n為奇數(shù)時(shí),當(dāng)n為偶數(shù)時(shí),;所以:a2=a1+2=4; a3=2a2=8; a4=a3+2=10, a5=2a4=20.故答案為20

考點(diǎn):數(shù)列的遞推關(guān)系

點(diǎn)評(píng):本題主要考查數(shù)列的遞推關(guān)系式的應(yīng)用以及計(jì)算能力,屬于基礎(chǔ)題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、已知點(diǎn)(n,an)(n∈N*)都在直線(xiàn)3x-y-24=0上,那么在數(shù)列an中有a7+a9=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=2,an+1=an+ln(1+
1n
)
,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、在數(shù)列{an}中,若a1=1,an+1=an+2(n≥1),則該數(shù)列的通項(xiàng)an=
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中a1=
1
2
,a2=
1
5
,且an+1=
(n-1)an
n-2an
(n≥2)

(1)求a3、a4,并求出數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
anan+1
an
+
an+1
,求證:對(duì)?n∈N*,都有b1+b2+…bn
3n-1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一般地,在數(shù)列{an}中,如果存在非零常數(shù)T,使得am+T=am對(duì)任意正整數(shù)m均成立,那么就稱(chēng){an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.已知數(shù)列{xn}滿(mǎn)足xn+1=|xn-xn-1|(n≥2,n∈N*),如果x1=1,x2=a,(a≤1,a≠0),設(shè)S2009為其前2009項(xiàng)的和,則當(dāng)數(shù)列{xn}的周期為3時(shí),S2009=
1339+a
1339+a

查看答案和解析>>

同步練習(xí)冊(cè)答案