在正四面體P-ABC中,D,E,F(xiàn)分別是AB,BC,CA的中點(diǎn),下面四個結(jié)論中不成立的(  )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDE⊥平面ABC
D.平面PAE⊥平面ABC
C
若平面PDF⊥平面ABC,則頂點(diǎn)P在底面的射影在DF上,又因?yàn)檎拿骟w的頂點(diǎn)在底面的射影是底面的中心,因此結(jié)論不成立,故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在平行四邊形中,,.將沿折起,使得平面平面,如圖.

(1)求證:
(2)若中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,空間中有一直角三角形,為直角,,,現(xiàn)以其中一直角邊為軸,按逆時(shí)針方向旋轉(zhuǎn)后,將點(diǎn)所在的位置記為,再按逆時(shí)針方向繼續(xù)旋轉(zhuǎn)后,點(diǎn)所在的位置記為.
(1)連接,取的中點(diǎn)為,求證:面;
(2)求與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是正方形,側(cè)面底面
(Ⅰ)若分別為,中點(diǎn),求證:∥平面;
(Ⅱ)求證:
(Ⅲ)若,求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖, 已知四邊形ABCD和BCEG均為直角梯形,ADBC,CEBG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.

(1)求證: ECCD;
(2)求證:AG∥平面BDE
(3)求:幾何體EG-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點(diǎn),在此幾何體中,給出下面四個結(jié)論:

①直線BE與直線CF異面;
②直線BE與直線AF異面;
③直線EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正確的有__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(2013•浙江)在空間中,過點(diǎn)A作平面π的垂線,垂足為B,記B=fπ(A).設(shè)α,β是兩個不同的平面,對空間任意一點(diǎn)P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,則(  )
A.平面α與平面β垂直
B.平面α與平面β所成的(銳)二面角為45°
C.平面α與平面β平行
D.平面α與平面β所成的(銳)二面角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知表示平面,m,n表示直線, ,給出下列四個結(jié)論:
;②;③;④,
則上述結(jié)論中正確的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m,n是兩條不同的直線, 是兩個不同的平面,下列命題中正確的是(    )
A.若,,則B.若,,,則
C.若,,則D.若,,,則

查看答案和解析>>

同步練習(xí)冊答案