f(x)是定義在R上的函數(shù),且f(x+3)≤f(x)+3,f(x+2)≥f(x)+2,f(1)=2,若an=f(n),(n∈N*),則a2011=________.

2012
分析:通過(guò)對(duì)已知不等式經(jīng)過(guò)仿寫(xiě)得到兩個(gè)左右兩邊相同函數(shù)但方向不同的不等式,利用f(x)≤f(x-6)+6,以及f(x)≥f(x-6)+6得到f(x)=f(x-6)+6,從而得到一個(gè)等差數(shù)列,利用等差數(shù)列的通項(xiàng)公式求出a2011
解答:∵f(x+3)≤f(x)+3
∴f(x)≤f(x-3)+3≤f(x-6)+6
∵f(x+2)≥f(x)+2
∴f(x)≥f(x-2)+2≥f(x-4)+4≥f(x-6)+6
∴f(x)=f(x-6)+6
∵an=f(n),
∴an-an-6=6
∵a1=2
∴{an}每隔6項(xiàng)取一項(xiàng)構(gòu)成一個(gè)等差數(shù)列
∴a2011=a1+(336-1)×6=2012
故答案為2012
點(diǎn)評(píng):解決題目中給了一些恒成立的等式或不等式,來(lái)判斷函數(shù)的性質(zhì)問(wèn)題,一般通過(guò)仿寫(xiě)得到更多的等式和不等式,從中判斷出函數(shù)的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且x≥0時(shí),f(x)=(
1
2
x,函數(shù)f(x)的值域?yàn)榧螦.
(Ⅰ)求f(-1)的值;
(Ⅱ)設(shè)函數(shù)g(x)=
-x2+(a-1)x+a
的定義域?yàn)榧螧,若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的函數(shù),對(duì)任意實(shí)數(shù)m、n,都有f(m)•f(n)=f(m+n),且當(dāng)x<0時(shí),f(x)>1.
(1)證明:①f(0)=1;②當(dāng)x>0時(shí),0<f(x)<1;③f(x)是R上的減函數(shù);
(2)設(shè)a∈R,試解關(guān)于x的不等式f(x2-3ax+1)•f(-3x+6a+1)≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)單調(diào)遞減,若x1+x2>0,則f(x1)+f(x2)的值( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是定義在R上的奇函數(shù),滿足f(x+2)=f(x),當(dāng)x∈(-2,0)時(shí),f(x)=2x-2,則f(-3)的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的函數(shù),且對(duì)任意實(shí)數(shù)x,恒有f(x+2)=-3f(x).當(dāng)x∈[0,2]時(shí),f(x)=2x-x2.則f(0)+f(-1)+f(-1)+…+f(-2014)=( 。
A、-
3
4
(1-31007
B、-
3
4
(1+31007
C、-
1
4
(1-
1
31007
D、-
1
4
(1+
1
31007

查看答案和解析>>

同步練習(xí)冊(cè)答案