把∠A=60°,邊長為8的菱形ABCD沿對角線BD折成60°的二面角,則AC與BD的距離為( )
A.6
B.
C.
D.
【答案】分析:折后兩條對角線之間的距離的范圍可以根據(jù)二面角θ的范圍求得,故先找出二面角的平面角,取AC的中點E,連接BE、DE,則∠BED=θ,且BE=ED,所以EF⊥BD,再取BD的中點F,由AF=CF可得:EF⊥AC,則折后兩條對角線之間的距離為EF的長,所以當θ=120°時,EF取最小值;當θ=60°時,EF取最大值.
解答:解:由題設∠A=60°,邊長為8的菱形ABCD,則∠D=120°,由余弦定理得AC2=64+64-2×8×8cos120°=3×64,故有AC=8
令E、F分別是中點,則折后兩條對角線之間的距離為EF的長
由題設條件及圖形可證得在△AEC中,∠AEC=60°,AE=CE=4
又F是中點,故有直角三角形AFE中,∠AEF=30°,∠EAF=60°,
故有EF=AE×sin60°=4×=6
故選A
點評:本小題主要考查空間線面關(guān)系、二面角的度量等知識,解題的關(guān)鍵是做出二面角的平面角來,本題考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學思想方法,以及空間想象能力、推理論證能力和運算求解能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2012-2013學年四川省成都市新津中學高一(下)6月月考數(shù)學試卷(理科)(解析版) 題型:填空題

下列五個命題:
①方程y=kx+2可表示經(jīng)過點(0,2)的所有直線;
②經(jīng)過點(x,y)且與直線l:Ax+By+C=0(A,B≠0)平行的直線方程為:A(x-x)+B(y-y)=0;
③在△ABC中,已知a=,A=60°,則=2;
④函數(shù)f(x)=的最小值為2;
⑤lgx+≥2   
其中真命題是    (把你認為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河南省中原名校高三(上)第三次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

如圖一,平面四邊形ABCD關(guān)于直線AC對稱,∠A=60°,∠C=90°,CD=2.把△ABD沿BD折起(如圖二),使二面角A-BD-C的余弦值等于.對于圖二,完成以下各小題:
(Ⅰ)求A,C兩點間的距離;
(Ⅱ)證明:AC⊥平面BCD;
(Ⅲ)求直線AC與平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年云南省昆明市高三復習適應性檢測數(shù)學試卷(理科)(解析版) 題型:選擇題

如圖,菱形ABCD中,∠A=60°,把菱形ABCD沿對角線BD折成二面角A-BD-C,AC=BD,空間中的點P滿足PA、PB、PC兩兩垂直,則下列命題中錯誤的是( )

A.二面角A-BD-C的余弦值為
B.PC∥平面ABD
C.PB與CD所成角為45°
D.PB⊥BD

查看答案和解析>>

科目:高中數(shù)學 來源:2011年遼寧省名校領(lǐng)航高考數(shù)學預測試卷(六)(解析版) 題型:解答題

如圖一,平面四邊形ABCD關(guān)于直線AC對稱,∠A=60°,∠C=90°,CD=2.把△ABD沿BD折起(如圖二),使二面角A-BD-C的余弦值等于.對于圖二,完成以下各小題:
(Ⅰ)求A,C兩點間的距離;
(Ⅱ)證明:AC⊥平面BCD;
(Ⅲ)求直線AC與平面ABD所成角的正弦值.

查看答案和解析>>

同步練習冊答案