如圖,在平面直角坐標(biāo)系中,、分別是橢圓的頂點(diǎn),過坐標(biāo)原點(diǎn)的直線交橢圓于、兩點(diǎn),其中在第一象限.過作軸的垂線,垂足為.連接,并延長交橢圓于點(diǎn).設(shè)直線的斜率為.
(Ⅰ)當(dāng)直線平分線段時(shí),求的值;
(Ⅱ)當(dāng)時(shí),求點(diǎn)到直線的距離;
(Ⅲ)對任意,求證:.
(Ⅰ);(Ⅱ);(Ⅲ)詳見解析
解析試題分析:(Ⅰ)求出點(diǎn)、的中點(diǎn)坐標(biāo),再用斜率公式可求得的值;(Ⅱ)求出直線的方程,再用點(diǎn)到直線的距離公式可求得點(diǎn)到直線的距離;
(Ⅲ)思路一:圓錐曲線題型的一個(gè)基本處理方法是設(shè)而不求,其核心是利用 ----(*).要證明,只需證明它們的斜率之積為-1. 但直接求它們的積,不好用(*)式,此時(shí)需要考慮轉(zhuǎn)化.
思路二:設(shè),然后用表示出的坐標(biāo).這種方法要注意直線的方程應(yīng)設(shè)為: ,若用點(diǎn)斜式,則運(yùn)算量大為增加.
此類題極易在運(yùn)算上出錯(cuò),需倍加小心.
試題解析:(Ⅰ)由題設(shè)知: ,所以線段的中點(diǎn)為,
由于直線平分線段,故直線過線段的中點(diǎn),又直線過坐標(biāo)原點(diǎn),
所以
(Ⅱ)將直線的方程代入橢圓方程得: ,因此
于是,由此得直線的方程為:
所以點(diǎn)到直線即的距離
(Ⅲ)法一:設(shè),則
由題意得:
設(shè)直線的斜率分別為,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/98/a/w4wfn4.png" style="vertical-align:middle;" />在直線上,所以
從而,所以:
法二:
所以直線的方程為: 代入橢圓方程得:
由韋達(dá)定理得:
所以
,所以
考點(diǎn):本題考查橢圓的方程、直線的方程,中點(diǎn)坐標(biāo)公式,點(diǎn)到直線的距離,兩直線垂直的判定;考查韋達(dá)定理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
OP |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A、偶函數(shù) | B、奇函數(shù) | C、不是奇函數(shù),也不是偶函數(shù) | D、奇偶性與k有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
6 |
1 |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
試問:是否存在定點(diǎn)E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com