如圖,P-ABCD是正四棱錐,ABCD-A1B1C1D1是正方體,其中AB=2,PA=
(1)求證:PA⊥B1D1;
(2)求平面PAD與平面BDD1B1所成銳二面角的余弦值.
【答案】分析:如圖,以D1為原點(diǎn),D1A1所在直線(xiàn)為x軸,D1C1所在直線(xiàn)為y軸,D1D所在直線(xiàn)為z軸建立空間直角坐標(biāo)系,給出圖中各點(diǎn)的坐標(biāo),
(1)先計(jì)算出,的坐標(biāo),驗(yàn)證其內(nèi)積為0即可得出PA⊥B1D1;
(2)平面BDD1B1的法向量為=(-2,2,0).故再求出平面PAD的法向量,設(shè)所求銳二面角為θ,由公式cosθ=
解答:解:以D1為原點(diǎn),D1A1所在直線(xiàn)為x軸,D1C1所在直線(xiàn)為y軸,D1D所在直線(xiàn)為z軸建立空間直角坐標(biāo)系,
則D1(0,0,0),A1(2,0,0),B1(2,2,0),C1(0,2,0),
D(0,0,2),A(2,0,2),B(2,2,2),C(0,2,2),
P(1,1,4).
(1)證明:∵=(-1,1,2),=(2,2,0),
=-2+2+0=0,
∴PA⊥B1D1
(2)平面BDD1B1的法向量為=(-2,2,0).=(2,0,0),=(1,1,2).
設(shè)平面PAD的法向量為=(x,y,z),則
.取=(0,-2,1),
設(shè)所求銳二面角為θ,則
cosθ===
點(diǎn)評(píng):本題考查用空間向量求直線(xiàn)與平面的夾角以及用空間向量證明面面垂直,正確解題的前提是理解向量?jī)?nèi)積與兩直線(xiàn)位置的對(duì)應(yīng)關(guān)系及兩平面法向量的夾角的余弦的絕對(duì)值即兩平面夾角的余弦值,了解知識(shí)之間的銜接點(diǎn),是正確轉(zhuǎn)化的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,P-ABCD是正四棱錐,ABCD-A1B1C1D1是正方體,其中AB=2,PA=
6

(1)求證:PA⊥B1D1;
(2)求平面PAD與平面BDD1B1所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,P-ABCD是正四棱錐,ABCD-A1B1C1D1是正方體,其中AB=2,PA=
6
.平面PAD與平面BDD1B1所成的銳二面角θ的余弦值為( 。
A、
10
10
B、
5
5
C、
15
5
D、
10
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,P-ABCD是正四棱錐,ABCD-A1B1C1D1是正方體,其中AB=2,PA=
6
,則B1到平面PAD的距離為
6
5
5
6
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,P-ABCD是正四棱錐,PA=
3
,AB=2.
(1)求證:平面PAC⊥平面PBD;
(2)求該四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,P-ABCD是底面水平放置且△PAB在正面的正四棱錐,已知PA=
3
,AB=2.
(1)畫(huà)出這個(gè)正四棱錐的正視圖(或稱(chēng)主視圖),并直接標(biāo)明正視圖各邊的長(zhǎng);
(2)求該四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案