在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知向量數(shù)學(xué)公式數(shù)學(xué)公式平行.
(1)求數(shù)學(xué)公式的值;
(2)若bcosC+ccosB=1,△ABC周長(zhǎng)為5,求b的長(zhǎng).

解:(1)由已知向量平行
∴b(cosA-2cosC)=(2c-a)cosB,
由正弦定理,可設(shè),則(cosA-2cosC)ksinB=(2ksinC-ksinA)cosB,
即(cosA-2cosC)sinB=(2sinC-sinA)cosB,
化簡(jiǎn)可得sin(A+B)=2sin(B+C),
又A+B+C=π,所以sinC=2sinA,
因此
(2),
由(1)知,∴c=2,
由a+b+c=5,得b=2.
分析:(1)利用向量共線的條件,建立等式,利用正弦定理,將邊轉(zhuǎn)化為角,利用和角公式,即可得到結(jié)論;
(2)由bcosC+ccosB=1利用余弦定理,求得a,再由(1)計(jì)算c,利用△ABC周長(zhǎng)為5,即可求b的長(zhǎng).
點(diǎn)評(píng):本題考查向量知識(shí)的運(yùn)用,考查正弦定理、余弦定理,解題的關(guān)鍵是邊角互化,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•天津)在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A、B、C所對(duì)邊長(zhǎng)分別為a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,則b=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a,b是方程x2-2
3
x+2=0的兩根,2cos(A+B)=1,則△ABC的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c.已知A=45°,a=6,b=3
2
,則B的大小為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知B=60°,不等式x2-4x+1<0的解集為{x|a<x<c},則b=
13
13

查看答案和解析>>

同步練習(xí)冊(cè)答案