19.已知△ABC中,AB=4,AC=2,|λ$\overrightarrow{AB}$+(2-2λ)$\overrightarrow{AC}$|(λ∈R)的最小值為2$\sqrt{3}$,若P為邊AB上任意一點(diǎn),則$\overrightarrow{PB}$•$\overrightarrow{PC}$的最小值是-$\frac{9}{4}$.

分析 根據(jù)向量的數(shù)量積公式和向量的模的計(jì)算得到f(λ)=4$\sqrt{(2-2cosA){λ}^{2}+(2cosA-2)λ+1}$,對(duì)cosA=0和cosA≠0,兩種情況加以討論,根據(jù)二次函數(shù)的性質(zhì)求出最值.

解答 解:由題意可知:丨$\overrightarrow{AB}$丨=4,丨$\overrightarrow{AC}$丨=2,
|λ$\overrightarrow{AB}$+(2-2λ)$\overrightarrow{AC}$|=$\sqrt{[λ\overrightarrow{AB}+(2-2λ)\overrightarrow{AC}]^{2}}$=$\sqrt{{λ}^{2}丨\overrightarrow{AB}{丨}^{2}+2λ(2-2λ)\overrightarrow{AB}•\overrightarrow{AC}+(2-2λ)^{2}丨\overrightarrow{AC}{丨}^{2}}$,
=$\sqrt{16{λ}^{2}+4(2-2λ)^{2}+2λ(2-2λ)×2×4cosA}$,
=4$\sqrt{(2-2cosA){λ}^{2}+(2cosA-2)λ+1}$,
=f(λ),
當(dāng)cosA=0時(shí),f(λ)=4$\sqrt{2{λ}^{2}-2λ+1}$=4$\sqrt{2(λ-\frac{1}{2})^{2}+\frac{1}{2}}$≥2$\sqrt{2}$,
由2$\sqrt{3}$>2$\sqrt{2}$,
∴A=$\frac{π}{2}$,
則建立直角坐標(biāo)系,A(0,0),B(4,0),C(0,2),
設(shè)P(x,0),(0<x<4),
$\overrightarrow{PB}$=(4-x,0),$\overrightarrow{PC}$=(-x,2),
∴$\overrightarrow{PB}$•$\overrightarrow{PC}$=-x(4-x)=x2-4x=(x-2)2-4,
∴當(dāng)x=2時(shí),$\overrightarrow{PB}$•$\overrightarrow{PC}$取最小值,最小值為:-4,
當(dāng)cosA≠0時(shí),f(λ)=4$\sqrt{(2-2cosA)(λ-\frac{1}{2})^{2}+\frac{1+cosA}{2}}$≥4$\sqrt{\frac{1+cosA}{2}}$=2$\sqrt{3}$,
整理得:1+cosA=$\frac{3}{2}$,解得:cosA=$\frac{1}{2}$,
∴A=$\frac{π}{3}$,
∴建立直角坐標(biāo)系,A(0,0),B(4,0),C(1,$\sqrt{3}$),
設(shè)P(x,0),(0<x<4),
$\overrightarrow{PB}$=(4-x,0),$\overrightarrow{PC}$=(1-x,$\sqrt{3}$),
則$\overrightarrow{PB}$•$\overrightarrow{PC}$=(4-x)•(1-x)=x2-5x+4=(x-$\frac{5}{2}$)2-$\frac{9}{4}$,
當(dāng)x=$\frac{5}{2}$時(shí),$\overrightarrow{PB}$•$\overrightarrow{PC}$取最小值,最小值為:-$\frac{9}{4}$,
故$\overrightarrow{PB}$•$\overrightarrow{PC}$的最小值-$\frac{9}{4}$,
故答案為:-$\frac{9}{4}$.

點(diǎn)評(píng) 本題考查了向量的數(shù)量積公式和向量的模的計(jì)算以及二次函數(shù)的性質(zhì),關(guān)鍵時(shí)分類討論,考查了學(xué)生的運(yùn)算能力,轉(zhuǎn)化能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知?jiǎng)狱c(diǎn)P(x,y)在橢圓$\frac{x^2}{25}$+$\frac{y^2}{16}$=1上,過坐標(biāo)原點(diǎn)的直線BC與橢圓相交,交點(diǎn)為B,C,點(diǎn)Q是三角形PBC的重心,若點(diǎn)A的坐標(biāo)為(3,0),|${\overrightarrow{AM}}$|=1,$\overrightarrow{QM}$•$\overrightarrow{AM}$=0,則|${\overrightarrow{QM}}$|的最小值是$\frac{{\sqrt{7}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.根據(jù)如下樣本數(shù)據(jù)
x34567
y4a+b-4-0.50.5-2
得到的回歸直線方程為$\hat y=bx+a$.若樣本中心為(5,0.9),則x每減少1個(gè)單位,y就( 。
A.增加1.4個(gè)單位B.減少1.4個(gè)單位C.增加1.2個(gè)單位D.減少1.2個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a,b表示兩條不同的直線,α,β表示兩個(gè)不重合的平面,給出下列四個(gè)命題:
①若α∥β,a?α,b?β,則a∥b;
②若a∥b,a∥α,b∥β,則α∥β;
③若α∥β,a?α,則a∥β;
④若a∥α,a∥β,則α∥β
其中正確的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列選項(xiàng)中,說法正確的是(  )
A.命題“?x0∈R,${x_0}^2-{x_0}≤0$”的否定為“?x∈R,x2-x>0”
B.命題“在△ABC中,A>30°,則$sinA>\frac{1}{2}$”的逆否命題為真命題
C.若非零向量$\overrightarrow a$、$\overrightarrow b$滿足$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|-|{\overrightarrow b}|$,則$\overrightarrow a$與$\overrightarrow b$共線
D.設(shè){an}是公比為q的等比數(shù)列,則“q>1”是“{an}為遞增數(shù)列”的充分必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某家電專賣店試銷A,B,C三種新型空調(diào),銷售情況記錄如表:
第一周第二周第三周第四周第五周
A型數(shù)量(臺(tái))101015A4A5
B型數(shù)量(臺(tái))101213B4B5
C型數(shù)量(臺(tái))15812C4C5
(Ⅰ)為跟蹤調(diào)查空調(diào)的使用情況,根據(jù)銷售記錄,從該家電專賣店前三周售出的所有空調(diào)中隨機(jī)抽取一臺(tái),求抽到的空調(diào)“是B型空調(diào)或是第一周售出空調(diào)”的概率;
(Ⅱ)為跟蹤調(diào)查空調(diào)的使用情況,根據(jù)銷售記錄,從該家電專賣店第二周和第三周售出的空調(diào)中分別隨機(jī)抽取一臺(tái),求抽取的兩臺(tái)空調(diào)中A型空調(diào)臺(tái)數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若S9=12,則下列各式一定為定值的是( 。
A.a3+a8B.a10C.a3+a5+a7D.a2+a7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}滿足a1•a5=16,a2=2,則公比q=( 。
A.4B.$\frac{5}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知角α的終邊過點(diǎn)P(-3m,4m)(m<0),則2sinα+cosα的值是( 。
A.1B.$\frac{2}{5}$C.-$\frac{2}{5}$D.-1

查看答案和解析>>

同步練習(xí)冊(cè)答案