如圖所示,在邊長為60 cm的正方形鐵片的四角上切去相等的正方形,再把它沿虛線折起,做成一個無蓋的長方體箱子,箱底的邊長是多少時,箱子的容積最大?最大容積是多少?
箱子底邊長取40 cm時,容積最大,最大容積為16 000 cm3.
解析試題分析:設箱子的底邊長為x cm,則箱子高h=cm.
箱子容積V=V(x)=x2h= (0<x<60).
求V(x)的導數(shù),得V′(x)=60x-x2=0,
解得x1=0(不合題意,舍去),x2=40.
當x在(0,60)內(nèi)變化時,導數(shù)V′(x)的正負如下表:
因此在x=40處,函數(shù)V(x)取得極大值,并且這個極大值就是函數(shù)V(x)的最大值.x (0,40) 40 (40,60) V′(x) + 0 -
將x=40代入V(x)
得最大容積V=402×=16 000(cm3).
所以箱子底邊長取40 cm時,容積最大,最大容積為16 000 cm3.
考點:本題主要考查函數(shù)模型,應用導數(shù)研究函數(shù)的單調(diào)性、最值。
點評:典型題,本題屬于函數(shù)及導數(shù)應用中的基本問題,通過研究構(gòu)建函數(shù)函數(shù)模型,利用導數(shù)求函數(shù)的最值。關(guān)于函數(shù)應用問題的考查,在高考題中往往是“一大兩小”。構(gòu)建函數(shù)模型的步驟“審清題意、設出變量、確定函數(shù)、求解答案、寫出結(jié)語”。本題利用均值定理,確定函數(shù)的最值。
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=x2+ (x≠0).
(1)判斷f(x)的奇偶性,并說明理由;
(2)若f(1)=2,試判斷f(x)在[2,+∞)上的單調(diào)性
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
2013年某工廠生產(chǎn)某種產(chǎn)品,每日的成本(單位:萬元)與日產(chǎn)量(單位:噸)滿足函數(shù)關(guān)系式,每日的銷售額(單位:萬元)與日產(chǎn)量的函數(shù)關(guān)系式
已知每日的利潤,且當時,.
(1)求的值;
(2)當日產(chǎn)量為多少噸時,每日的利潤可以達到最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某工廠生產(chǎn)一種儀器,由于受生產(chǎn)能力和技術(shù)水平的限制,會產(chǎn)生一些次品,根據(jù)以往的經(jīng)驗知道,其次品率P與日產(chǎn)量(件)之間近似滿足關(guān)系:
(其中為小于96的正整常數(shù))
(注:次品率P=,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件次品,其余為合格品.)已知每生產(chǎn)一件合格的儀器可以盈利A元,但每生產(chǎn)一件次品將虧損A/2元,故廠方希望定出合適的日產(chǎn)量。
試將生產(chǎn)這種儀器每天的贏利T(元)表示為日產(chǎn)量(件的函數(shù));
當日產(chǎn)量為多少時,可獲得最大利潤?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
欲修建一橫斷面為等腰梯形(如圖1)的水渠,為降低成本必須盡量減少水與渠壁的接觸面,若水渠橫斷面面積設計為定值S,渠深h,則水渠壁的傾角α(0°<α<90°)應為多大時,方能使修建成本最低?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=log2(x+m),且f(0)、f(2)、f(6)成等差數(shù)列.
(1)求實數(shù)m的值;
(2)若a、b、c是兩兩不相等的正數(shù),且a、b、c成等比數(shù)列,試判斷f(a)+f(c)與2f(b)的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)減函數(shù)(Ⅰ)求函數(shù);(Ⅱ)討論的奇偶性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com