橢圓的離心率為(  )
A.B.C.±D.±
B

試題分析:根據(jù)題意可得橢圓的標準方程,所以,所以,所以,故選B.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知動圓與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線;設(shè)為曲線上的一個不在軸上的動點,為坐標原點,過點的平行線交曲線兩個不同的點.
(1)求曲線的方程;
(2)試探究的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(3)記的面積為的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C: (a>b>0)的離心率為,且橢圓C上一點與兩個焦點F1,F(xiàn)2構(gòu)成的三角形的周長為2+2.
(1)求橢圓C的方程;
(2)過右焦點F2作直線l 與橢圓C交于A,B兩點,設(shè),若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面上的動點P(x,y)及兩個定點A(-2,0),B(2,0),直線PA,PB的斜率分別為K1,K2且K1K2=-
(1).求動點P的軌跡C方程;
(2).設(shè)直線L:y=kx+m與曲線C交于不同兩點,M,N,當OM⊥ON時,求O點到直線L的距離(O為坐標原點)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xoy中,已知橢圓C1的左焦點為F1(-1,0),且點P(0,1)在C1上。
(1)求橢圓C1的方程;
(2)設(shè)直線l同時與橢圓C1和拋物線C2相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的左焦點為,直線與橢圓相交于點、,當△FAB的周長最大時,的面積是____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)圓錐曲線r的兩個焦點分別為,若曲線r上存在點P滿足,則曲線r的離心率等于(   )
A.
B.或2
C.或2
D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的長軸在軸上,焦距為,則等于 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的中心在原點、焦點在軸上,拋物線的頂點在原點、焦點在軸上.小明從曲線、上各取若干個點(每條曲線上至少取兩個點),并記錄其坐標(.由于記錄失誤,使得其中恰有一個點既不在橢圓上,也不在拋物線上,小明的記錄如下:














據(jù)此,可推斷橢圓的方程為            

查看答案和解析>>

同步練習冊答案