在數(shù)列{an}中,a1=1,an+1
an
=8

(Ⅰ)求a2,a3;
(Ⅱ)設(shè)bn=log2an,求證:{bn-2}為等比數(shù)列;
(Ⅲ)求{an}的前n項(xiàng)積Tn
分析:(I)對(duì)于an+1
an
=8分別令n=1,2即可得出;
(II)利用對(duì)數(shù)的運(yùn)算法則可得
bn+1-2
bn-2
=
log2an+1-2
log2an-2
=-
1
2
,即可證明;
(III)設(shè)數(shù)列{bn-2}的前n項(xiàng)和為Sn,求出Sn即可得出Tn
解答:解:(Ⅰ)∵a2
a1
=8,a1=1
,
∴a2=8.
a3
a2
=8,a1=8
,
a3=2
2

(Ⅱ)證明:∵
bn+1-2
bn-2
=
log2an+1-2
log2an-2

=
log2
8
an
-2
log2an-2
=
3-
1
2
log2an-2
log2an-2

1
2
×
2-log2an
log2an-2
=-
1
2

∴{bn-2}為等比數(shù)列,首項(xiàng)為b1-2,即為-2,其公比為-
1
2

(Ⅲ)設(shè)數(shù)列{bn-2}的前n項(xiàng)和為Sn
Sn=
-2(1-(-
1
2
)
n
)
1+
1
2
=b1+b2+b3+…+bn-2n=log2a1+log2a2+…log2an-2n
=log2Tn-2n

log2Tn=
4
3
[(-
1
2
)n-1]+2n
,
Tn=2
4
3
[(-
1
2
)
n
-1]+2n
點(diǎn)評(píng):本題考查了等比數(shù)列的定義通項(xiàng)公式及其前n項(xiàng)和公式、對(duì)數(shù)的運(yùn)算法則等基礎(chǔ)知識(shí)與基本技能方法,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,
a
 
1
=1
,an=
1
2
an-1+1
(n≥2),則數(shù)列{an}的通項(xiàng)公式為an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a 1=
1
3
,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{
an
n
}的前n項(xiàng)和為Tn,證明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a=
12
,前n項(xiàng)和Sn=n2an,求an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=a,前n項(xiàng)和Sn構(gòu)成公比為q的等比數(shù)列,________________.

(先在橫線上填上一個(gè)結(jié)論,然后再解答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省汕尾市陸豐市碣石中學(xué)高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在數(shù)列{an}中,a,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{}的前n項(xiàng)和為Tn,證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案