解答:解:(1)如圖,連接AC、AB
1,由
AA1CC1,
知A
1ACC
1是平行四邊形,則
A1C1AC,
所以∠B
1CA為異面直線B
1C與A
1C
1所成角.-----(2分)
在△B
1CA中,
AC=4,
AB1=B1C=4,
則
cos∠ACB1==,
所以
∠ACB1=arccos.----------(4分)
(2)若學(xué)生能提出一些質(zhì)量較高的問(wèn)題,則相應(yīng)給(3分),有解答的再給(5分).
而提出一些沒(méi)有多大價(jià)值的問(wèn)題則不給分.
若提出的問(wèn)題為以下兩種情況,可以相應(yīng)給分.
第一種:
提出問(wèn)題:證明三棱錐E-B
1BC的體積為定值.-----(3分)
問(wèn)題解答:如圖,因?yàn)镈D
1∥平面B
1BCC
1,所以D
1D上任意一點(diǎn)到平面B
1BCC
1的距離相等,因此三棱錐E-B
1BC與三棱錐D-B
1BC同底等高,
VE-B1BC=VD-B1BC.----------(3分)
而
VD-B1BC=•S△B1BC•DC=××4×8×4=,
所以三棱錐E-B
1BC的體積為定值
.----------(2分)
說(shuō)明:1)若提出的問(wèn)題為求三棱錐E-B
1BC的體積,則根據(jù)上述解答相應(yīng)給分.
2)若在側(cè)面B
1BCC
1上任取三個(gè)頂點(diǎn),與點(diǎn)E構(gòu)成三棱錐時(shí),結(jié)論類似,可相應(yīng)給分.
若在側(cè)面A
1ABB
1上任取三個(gè)頂點(diǎn),與點(diǎn)E構(gòu)成三棱錐時(shí),結(jié)論類似,可相應(yīng)給分.
第二種:
提出問(wèn)題:三棱錐E-ADC的體積在E點(diǎn)從點(diǎn)D運(yùn)動(dòng)到D
1過(guò)程中單調(diào)遞增.-----(3分)
問(wèn)題解答:因?yàn)?span id="0k31c68" class="MathJye">
VE-ADC=
•
S△ADC•DE,知S
△ADC為定值,
則三棱錐E-ADC的體積與DE成正比,可知V
E-ADC隨著DE增大而增大,又因?yàn)镈E∈(0,8),----(3分)
即三棱錐E-ADC的體積在E點(diǎn)從點(diǎn)D運(yùn)動(dòng)到D
1過(guò)程中單調(diào)遞增.-----(2分)
說(shuō)明:1)若提出的問(wèn)題是求三棱錐E-ADC的體積范圍,也可相應(yīng)給分.
解答:因?yàn)镾
△ADC=8,而
VE-ADC=DE,DE∈(0,8),----(3分)
則
VE-ADC∈(0,).----(2分).
2)若在底面ABCD上任取三個(gè)頂點(diǎn),與點(diǎn)E構(gòu)成三棱錐時(shí),結(jié)論類似,可相應(yīng)給分.
若在底面A
1B
1C
1D
1上任取三個(gè)頂點(diǎn),與點(diǎn)E構(gòu)成三棱錐時(shí),結(jié)論類似(單調(diào)遞減),
可相應(yīng)給分.