不等式x2-3x+2<0的解集是(  )
A、{x|x<-2或x>-1}
B、{x|x<1或x>2}
C、{x|1<x<2}
D、{x|-2<x-1}
考點(diǎn):一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:把不等式x2-3x+2<0化為(x-1)(x-2)<0,求出解集即可.
解答: 解:∵不等式x2-3x+2<0可化為
(x-1)(x-2)<0,
解得1<x<2;
∴不等式的解集是{x|1<x<2}.
故選:C.
點(diǎn)評(píng):本題考查了求一元二次不等式的解集的問(wèn)題,是容易題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(a+b)n+1的展開(kāi)式中,奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a=log0.20.3,b=log0.30.2,c=log0.30.1,則a,b,c的大小關(guān)系為( 。
A、a>b>c
B、b>a>c
C、c>a>b
D、c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在數(shù)列{an}中,an>0,Sn是它前n項(xiàng)的和,且4Sn=(an+1)2,則數(shù)列{an}的通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足(t-1)Sn=t(an-2),(t為常數(shù),t≠0且t≠1).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=Sn-1,且數(shù)列{bn}為等比數(shù)列.
①求t的值;
②若cn=(-an)•log3(-bn),求數(shù)列{cn}的前n和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an} 的公差不為零,a1=1,且a2,a5,a14成等比數(shù)列            
(Ⅰ)求{an} 通項(xiàng)公式;
(Ⅱ)設(shè)bn=2 an+2n,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
=(1,3),
b
=(-1,1),則
a
b
=( 。
A、2B、1C、0D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b,c分別是函數(shù)f(x)=2x-log
1
2
x,g(x)=(
1
2
)x-log2
x,h(x)=(
1
2
)x-log
1
2
x的零點(diǎn),則a,b,c的大小關(guān)系是(  )
A、a<c<b
B、a<b<c
C、b<a<c
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a•ex,x≤0
-lnx,x>0
,(a>0,其中e為自然對(duì)數(shù)的底數(shù)),若關(guān)于x的方程f(f(x))=0,有且只有一個(gè)實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍為( 。
A、(1,+∞)
B、(1,2)
C、(0,1)
D、(0,1)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案