已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x-y+1=0.
(1)若數(shù)學(xué)公式時(shí),函數(shù)f(x)有極值,求函數(shù)f(x)的解析式;
(2)若函數(shù)數(shù)學(xué)公式,求h(x)的單調(diào)遞增區(qū)間(其中a∈R).

解:(1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b.
當(dāng)x=1時(shí),切線l的斜率為3,可得2a+b=0. ①
當(dāng)x=時(shí),y=f(x)有極值,則f′()=0,可得4a+3b+4=0. ②
由①、②解得a=2,b=-4.
由于l上的切點(diǎn)的橫坐標(biāo)為x=1,∴f(1)=4,∴1+a+b+c=4,∴c=5.
∴f(x)=x3+2x2-4x+5. …(6分)
(2)由(1)得,∴,

則h′(x)=3x2+ax-2a2=(x+a)(3x-2a).
①當(dāng)a=0時(shí),h′(x)≥0恒成立,∴h(x)在R上單調(diào)遞增;
②當(dāng)a>0時(shí),令h′(x)>0,解得x<-a或,∴h(x)的單調(diào)遞增區(qū)間是(-∞,-a)和;
③當(dāng)a<0時(shí),令h′(x)>0,解得或x>-a,∴h(x)的單調(diào)遞增區(qū)間是和(-a,+∞). …(12分)
分析:(1)求導(dǎo)函數(shù),利用導(dǎo)數(shù)的幾何意義,可得2a+b=0,利用時(shí),函數(shù)f(x)有極值,及切點(diǎn)的坐標(biāo),即可求得函數(shù)f(x)的解析式;
(2)先確定,再求導(dǎo)函數(shù),利用導(dǎo)數(shù)的正負(fù),即可得到函數(shù)的單調(diào)區(qū)間.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查導(dǎo)數(shù)的幾何意義,函數(shù)的極值,考查函數(shù)的單調(diào)性,確定函數(shù)解析式,正確求導(dǎo)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案