已知f(2x+1)=
x
x-1
,則f(-3)=
2
3
2
3
分析:直接利用函數(shù)的表達(dá)式,化簡(jiǎn)f(-3)為f(2x+1)=
x
x-1
類型,求解即可.
解答:解:因?yàn)?span id="kyjqdrd" class="MathJye">f(2x+1)=
x
x-1

所以f(-3)=f[2×(-2)+1]=
-2
-2-1
=
2
3

故答案為:
2
3
點(diǎn)評(píng):本題考查函數(shù)值的求法,好函數(shù)的自變量的形式是解題的關(guān)鍵,也可以先求解函數(shù)的表達(dá)式,然后求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

例2、(1)已知f(x+
1
x
)=x3+
1
x3
,求f(x).
(2)已知f(
2
x
+1)=lgx
,求f(x).
(3)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x).
(4)已知f(x)滿足2f(x)+f(
1
x
)=3x
,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(2x-1)=
1-x2
x2
(x≠0)
,那么f(0)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)下列條件求各函數(shù)的表達(dá)式.
(1)已知 f(
2
x
+1)=lgx
,求f(x);
(2)已知f(x-
1
x
)=
1
x2
+x2+1
,求f(x);
(3)已知f(x)滿足2f(x)+f(
1
x
)=3x
,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(2x+1)=
8x+74x2+4x+2
,求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案