設(shè)函數(shù)f(x)=a+
(-x2-4x)
和g(x)=
4x
3
+1,已知當(dāng)x∈[-4,0]時(shí),恒有f(x)≤g(x),求實(shí)數(shù)a的取值范圍.
考點(diǎn):函數(shù)恒成立問(wèn)題
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:由f(x)≤g(x),變形得到
(-x2-4x)
4x
3
+1-a,由右邊大于等于0得到a≤
4x
3
+1,結(jié)合x(chóng)的范圍得到a≤-
13
3
.然后把
(-x2-4x)
4x
3
+1-a兩邊平方得到
25x2+(70-24a)x+(1-a)2≥0.再由該不等式在x∈[-4,0]時(shí)恒成立列關(guān)于a的不等式組求得a的取值范圍.
解答: 解:由f(x)≤g(x),得a+
(-x2-4x)
4x
3
+1,
(-x2-4x)
4x
3
+1-a,①
4x
3
+1-a≥0,得a≤
4x
3
+1,
∵x∈[-4,0],∴a≤-
13
3

把①式兩邊平方得,-x2-4x≤(
4x
3
+1-a)2
,
即25x2+(70-24a)x+(1-a)2≥0.
要使當(dāng)x∈[-4,0]時(shí),上式恒成立,
a≤-
13
3
25×(-4)2+(70-24a)×(-4)+(1-a)2≥0
,解得a≤-
13
3

∴實(shí)數(shù)a的取值范圍是(-∞,-
13
3
].
點(diǎn)評(píng):本題考查了函數(shù)恒成立問(wèn)題,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,訓(xùn)練了二次不等式在區(qū)間上恒成立的解決方法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由無(wú)理數(shù)引發(fā)的數(shù)學(xué)危機(jī)一直延續(xù)到19世紀(jì).直到1872年,德國(guó)數(shù)學(xué)家戴德金從連續(xù)性的要求出發(fā),用有理數(shù)的“分割”來(lái)定義無(wú)理數(shù)(史稱(chēng)戴德金分割),并把實(shí)數(shù)理論建立在嚴(yán)格的科學(xué)基礎(chǔ)上,才結(jié)束了無(wú)理數(shù)被認(rèn)為“無(wú)理”的時(shí)代,也結(jié)束了持續(xù)2000多年的數(shù)學(xué)史上的第一次大危機(jī).所謂戴德金分割,是指將有理數(shù)集Q劃分為兩個(gè)非空的子集M與N,且滿(mǎn)足M∪N=Q,M∩N=∅,M中的每一個(gè)元素都小于N中的每一個(gè)元素,則稱(chēng)(M,N)為戴德金分割試判斷,對(duì)于任一戴德金分割(M,N),下列選項(xiàng)中,不可能成 立的是( 。
A、M沒(méi)有最大元素,N有一個(gè)最小元素
B、M沒(méi)有最大元素,N也沒(méi)有最小元素
C、M有一個(gè)最大元素,N有一個(gè)最小元素
D、M有一個(gè)最大元素,N沒(méi)有最小元素

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有一塊直角邊為
3
2
2
m的等腰直角三角形木板,現(xiàn)要鋸出一個(gè)矩形做辦公桌面,設(shè)矩形的一邊長(zhǎng)為xm,如圖所示:
(1)求矩形面積y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)x為多少時(shí),矩形面積取得最大值?矩形的最大面積為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績(jī)是否與性別有關(guān),先統(tǒng)計(jì)本校高三年級(jí)每個(gè)學(xué)生一學(xué)期數(shù)學(xué)成績(jī)平均分(采用百分制),剔除平均分在30分以下的學(xué)生后,共有男生300名,女生200名.現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績(jī)分為6組,得到如下所示頻數(shù)分布表.
分?jǐn)?shù)段[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]
39181565
64910132
(1)估計(jì)男、女生各自的成績(jī)平均分(同一組數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表),從計(jì)算結(jié)果看,判斷數(shù)學(xué)成績(jī)與性別是否有關(guān);
優(yōu)分非優(yōu)分合計(jì)
男生
女生
合計(jì)100
(2)規(guī)定80分以上為優(yōu)分(含80分),請(qǐng)你根據(jù)已知條件作出2×2列聯(lián)表,并判斷是否有90%以上的把握認(rèn)為“數(shù)學(xué)成績(jī)與性別有關(guān)”.
附表及公式
P(k2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的通項(xiàng)公式為an=-2n+5.證明:{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a<-b<0,則|a+b|-|a-b|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知 a,b∈R,矩陣A=
-1a
b3
所對(duì)應(yīng)的變換 TA將直線(xiàn) x-y-1=0變換為自身,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1:x2+y2-2x=0與圓C2:x2+y2+4y=0交于點(diǎn)A、B,則直線(xiàn)AB的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)M(2,m)(m<0)到直線(xiàn)l:5x-12y+n=0的距離是4,且直線(xiàn)l在y軸上的截距為
1
2
,則m+n=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案