在正三棱錐S-ABC中,M、N分別是棱SC、BC的中點(diǎn),且MN⊥AM,若從三棱錐6條棱中任意取兩條棱,其中兩條棱垂直的概率是( 。
A、
1
5
B、
4
15
C、
2
5
D、
3
5
考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率
專題:空間位置關(guān)系與距離,概率與統(tǒng)計(jì)
分析:先根據(jù)立體幾何知識得到SB⊥AC,SA⊥BC,SC⊥AB,再根據(jù)線面垂直的判斷和性質(zhì),得到SA⊥SB,SA⊥SC,SC⊥SB,故而得到兩條棱垂直有6種,根據(jù)概率公式即可求出
解答: 解:∵三棱錐S-ABC正棱錐,
∴SB⊥AC,SA⊥BC,SC⊥AB,(對棱互相垂直)
∵M(jìn)、N分別是棱SC、BC的中點(diǎn),
∴MN∥SB,
∵M(jìn)N⊥AM,
∴SB⊥AM,
∵AM∩AC=A,AM,AC?平面SAC
∴SB⊥平面SAC,
∵SC?平面SAC
∴BS⊥SC,
∵正三棱錐側(cè)面都是全等的等腰三角形,
∴SA,SB,SC,兩兩垂直,
即SA⊥SB,SA⊥SC,SC⊥SB,
故三棱錐6條棱中任意取兩條棱,共有
C
2
6
=15種,其中兩條棱垂直的共有6種,
故兩條棱垂直的概率P=
6
15
=
2
5

故選:C
點(diǎn)評:本題以立體幾何為載體,考察了古典概型概率的問題,關(guān)鍵是求證出 SA,SB,SC,兩兩垂直,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是直線y=-2上一點(diǎn),過點(diǎn)P作拋物線x2=4y的兩條切線PA,PB和平行于y軸的直線l,切點(diǎn)分別為A,B,直線l與AB和拋物線分別相交于C,D,記PA,PB的斜率分別為k1,k2
(1)若k1+k2=2,求點(diǎn)P的坐標(biāo);
(2)求證:|AC|=|BC|,且|CD|=|PD|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C的中心為原點(diǎn)O,F(xiàn)(-2
5
,0)為C的左焦點(diǎn),P為C上一點(diǎn),滿足|OP|=|OF|且|PF|=4,則橢圓C的方程為( 。
A、
x2
25
+
y2
5
=1
B、
x2
36
+
y2
16
=1
C、
x2
30
+
y2
10
=1
D、
x2
45
+
y2
25
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將(1+
1
3
x)n展開式的各項(xiàng)依次記為a1(x),a2(x),a3(x),…,an(x),an+1(x),設(shè)F(x)=a1(x)+2a2(x)+3a3(x)+…+nan(x)+(n+1)an+1(x).
(1)是否存在n∈N*,使得a1(x),a2(x),a3(x)的系數(shù)成等比數(shù)列?若存在,求出n的值;若不存在,請說明理由.
(2)求證:對任意x1,x2∈[0,3],恒有|F(x1)-F(x2)|<2n-1(n+2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}、{bn}是兩個(gè)等差數(shù)列,其中a1=3,b1=-3,且a19-b19=16,那么a10-b10的值為( 。
A、-6B、6C、0D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)使用計(jì)算器求10個(gè)數(shù)據(jù)的平均值時(shí),錯(cuò)將其中一個(gè)數(shù)據(jù)20輸入為10,結(jié)果得到平均數(shù)14,那么由此算出的方差與實(shí)際方差的差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在四棱錐P-ABCD中,AD⊥DB,其中三棱錐P-BCD的三視圖如圖2所示,且sin∠BDC=
3
5


(I)求證:AD⊥PB;
(Ⅱ)若AD=6,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
4
1
(2x-
1
x
)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某股民購買一公司股票10萬元,在連續(xù)十個(gè)交易日內(nèi),前5個(gè)交易日,平均每天上漲5%,后5個(gè)交易日內(nèi),平均每天下跌4.9%,則股民的股票盈虧情況(不計(jì)其他成本,精確到元)( 。
A、賺723元
B、賺145元
C、虧145元
D、虧723元

查看答案和解析>>

同步練習(xí)冊答案