已知橢圓的焦點(diǎn)坐標(biāo)為F1(-1,0),F2(1,0),過(guò)F2垂直于長(zhǎng)軸的直線(xiàn)交橢圓于P,Q兩點(diǎn),且|PQ|=3.
(1)求橢圓的方程;
(2)過(guò)F2的直線(xiàn)l與橢圓交于不同的兩點(diǎn)M,N,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線(xiàn)方程;若不存在,請(qǐng)說(shuō)明理由.
(1)(2)l的方程為x=1.
【解析】(1)設(shè)橢圓方程為=1(a>b>0),
由焦點(diǎn)坐標(biāo)可得c=1.由|PQ|=3,可得=3.
又a2-b2=1,得a=2,b=.故橢圓方程為.
(2)設(shè)M(x1,y1),N(x2,y2),不妨令y1>0,y2<0,
設(shè)△F1MN的內(nèi)切圓的半徑R,
則△F1MN的周長(zhǎng)為4a=8,S△F1MN= (|MN|+|F1M|+|F1N|)R=4R,
因此要使△F1MN內(nèi)切圓的面積最大,則R最大,此時(shí)S△F1MN也最大.
S△F1MN=|F1F2||y1-y2|=y1-y2,
由題知,直線(xiàn)l的斜率不為零,可設(shè)直線(xiàn)l的方程為x=my+1,
由得(3m2+4)y2+6my-9=0,
得y1=,y2=,
則S△F1MN=y1-y2=,
令t=,則t≥1,則S△F1MN=.
令f(t)=3t+,則f′(t)=3-,當(dāng)t≥1時(shí),f′(t)>0,
所以f(t)在[1,+∞)上單調(diào)遞增,有f(t)≥f(1)=4,S△F1MN≤=3,
當(dāng)t=1,m=0時(shí),S△F1MN=3,又S△F1MN=4R,∴Rmax=.
這時(shí)所求內(nèi)切圓面積的最大值為π.
故△F1MN內(nèi)切圓面積的最大值為π,且此時(shí)直線(xiàn)l的方程為x=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專(zhuān)題提升訓(xùn)練江蘇專(zhuān)用21練習(xí)卷(解析版) 題型:填空題
從一副沒(méi)有大小王的52張撲克牌中隨機(jī)抽取1張,事件A為“抽得紅桃8”,事件B為“抽得為黑桃”,則事件“A+B”的概率值是________(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專(zhuān)題提升訓(xùn)練江蘇專(zhuān)用18練習(xí)卷(解析版) 題型:解答題
如圖,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(0<y1<y2<…<yn)是曲線(xiàn)C:y2=3x(y≥0)上的n個(gè)點(diǎn),點(diǎn)Ai(ai,0)(i=1,2,3,…,n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標(biāo)原點(diǎn)).
(1)寫(xiě)出a1,a2,a3;
(2)求出點(diǎn)An(an,0)(n∈N*)的橫坐標(biāo)an關(guān)于n的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專(zhuān)題提升訓(xùn)練江蘇專(zhuān)用15練習(xí)卷(解析版) 題型:解答題
在直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圓C1,直線(xiàn)C2的極坐標(biāo)方程分別為ρ=4sin θ,ρcos=2.
(1)求C1與C2交點(diǎn)的極坐標(biāo);
(2)設(shè)P為C1的圓心,Q為C1與C2交點(diǎn)連線(xiàn)的中點(diǎn).已知直線(xiàn)PQ的參數(shù)方程為(t∈R為參數(shù)),求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專(zhuān)題提升訓(xùn)練江蘇專(zhuān)用14練習(xí)卷(解析版) 題型:解答題
若對(duì)任意x>0,≤a恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專(zhuān)題提升訓(xùn)練江蘇專(zhuān)用13練習(xí)卷(解析版) 題型:填空題
在平面直角坐標(biāo)系xOy中,以橢圓=1(a>b>0)上的一點(diǎn)A為圓心的圓與x軸相切于橢圓的一個(gè)焦點(diǎn),與y軸相交于B、C兩點(diǎn),若△ABC是銳角三角形,則該橢圓的離心率的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專(zhuān)題提升訓(xùn)練江蘇專(zhuān)用12練習(xí)卷(解析版) 題型:解答題
已知橢圓C的中心為平面直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(1)求橢圓C的方程;
(2)若P為橢圓C上的動(dòng)點(diǎn),M為過(guò)P且垂直于x軸的直線(xiàn)上的一點(diǎn),=λ,求點(diǎn)M的軌跡方程,并說(shuō)明軌跡是什么曲線(xiàn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專(zhuān)題提升訓(xùn)練江蘇專(zhuān)用11練習(xí)卷(解析版) 題型:填空題
已知圓的方程為x2+y2-6x-8y=0,設(shè)該圓中過(guò)點(diǎn)(3,5)的最長(zhǎng)弦和最短弦分別為AC和BD,則四邊形ABCD的面積是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專(zhuān)題復(fù)習(xí)與測(cè)試選擇填空限時(shí)訓(xùn)練3練習(xí)卷(解析版) 題型:選擇題
執(zhí)行如圖所示的程序框圖,任意輸入一次x(0≤x≤1)與y(0≤y≤1),則能輸出數(shù)對(duì)(x,y)的概率為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com