精英家教網 > 高中數學 > 題目詳情
在數列{an}和{bn}中,a1=2,3an+1-an=0(n∈N*),bn是an與an+1的等差中項,則b3=
4
27
4
27
分析:先利用a1=2,3an+1-an=0(n∈N*),可知數列{an} 是以2為首項,
1
3
為公比的等比數列,再利用bn是an與an+1的等差中項,可求b3的值.
解答:解:由題意,數列{an} 是以2為首項,
1
3
為公比的等比數列
an=2×(
1
3
)
n-1

∵bn是an與an+1的等差中項
2bn=an+an+1=
8
3
×(
1
3
)
n-1

b3=
4
27

故答案為
4
27
點評:本題的考點是數列遞推式,主要考查等比數列的定義,考查等差中項,關鍵是由遞推關系得出等比數列.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在數列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數列{bn}的前n項和;
(Ⅱ)證明:當a=2,b=
2
時,數列{bn}中的任意三項都不能構成等比數列;
(Ⅲ)設A={a1,a2,a3,…},B={b1,b2,b3,…},試問在區(qū)間[1,a]上是否存在實數b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相應的集合C;若不存在,試說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數列{bn}的前n項和;
(Ⅱ)證明:當a=2,b=
2
時,數列{bn}中的任意三項都不能構成等比數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.設A={a1,a2,a3,…},B={b1,b2,b3,…},試問在區(qū)間[1,a]上是否存在實數b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相應的集合C;若不存在,試說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在數列{an}和{bn}中,數學公式,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數列{bn}的前n項和;
(Ⅱ)證明:當數學公式時,數列{bn}中的任意三項都不能構成等比數列.

查看答案和解析>>

科目:高中數學 來源:2011年北京市清華附中高三統(tǒng)練數學試卷6(理科)(解析版) 題型:解答題

在數列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數列{bn}的前n項和;
(Ⅱ)證明:當時,數列{bn}中的任意三項都不能構成等比數列;
(Ⅲ)設A={a1,a2,a3,…},B={b1,b2,b3,…},試問在區(qū)間[1,a]上是否存在實數b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相應的集合C;若不存在,試說明理由.

查看答案和解析>>

同步練習冊答案