設(shè)M是橢圓
x2
4
+
y2
3
=1
上的動(dòng)點(diǎn),A1和A2分別是橢圓的左、右頂點(diǎn),則
MA1
MA2
的最小值等于.( 。
分析:設(shè)M(x0,y0),則根據(jù)向量的坐標(biāo)表示寫出向量
MA1
,
MA2
的坐標(biāo),再結(jié)合向量的數(shù)量積將
MA1
MA2
表示成x0的二次函數(shù)的形式,結(jié)合函數(shù)的性質(zhì)求出
MA1
MA2
的最小值.
解答:解:設(shè)M(x0,y0),則
MA1
=(-2-x0,-y0),
MA2
=(2-x0,-y0)
MA1
MA2
=x02+y02-4=x02+(3-
3
4
x02)-4=
1
4
x02-1
,
顯然當(dāng)x0=0時(shí),
MA1
MA2
取最小值為-1.
故選B.
點(diǎn)評(píng):本小題主要考查二次函數(shù)單調(diào)性的應(yīng)用、橢圓的簡(jiǎn)單性質(zhì)、平面向量數(shù)量積的運(yùn)算等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在A,B,C,D四小題中只能選做2題,每題10分,共計(jì)20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(Ⅱ)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關(guān)于x的不等式|x+2|+|x-1|≥a的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1、F2分別是橢圓
x2
4
+y2=1的左、右焦點(diǎn).
(1)若P是該橢圓上的一個(gè)動(dòng)點(diǎn),求向量乘積
PF1
PF2
的取值范圍;
(2)設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓交于不同的兩點(diǎn)M、N,且∠MON為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.
(3)設(shè)A(2,0),B(0,1)是它的兩個(gè)頂點(diǎn),直線y=kx(k>0)與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).求四邊形AEBF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江蘇二模)如圖,已知橢圓C:
x2
4
+y2=1
,A、B是四條直線x=±2,y=±1所圍成的兩個(gè)頂點(diǎn).
(1)設(shè)P是橢圓C上任意一點(diǎn),若
OP
=m
OA
+n
OB
,求證:動(dòng)點(diǎn)Q(m,n)在定圓上運(yùn)動(dòng),并求出定圓的方程;
(2)若M、N是橢圓C上兩個(gè)動(dòng)點(diǎn),且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,雙曲線C1
x2
4
-
y2
b2
=1
與橢圓C2
x2
4
+
y2
b2
=1
(0<b<2)的左、右頂點(diǎn)分別為A1、A2第一象限內(nèi)的點(diǎn)P在雙曲線C1上,線段OP與橢圓C2交于點(diǎn)A,O為坐標(biāo)原點(diǎn).
(I)求證:
kAA1+kAA2
kPA1+kPA2
為定值(其中kAA1表示直線AA1的斜率,kAA2等意義類似);
(II)證明:△OAA2與△OA2P不相似.
(III)設(shè)滿足{(x,y)|
x2
4
-
y2
m2
=1
,x∈R,y∈R}⊆{(x,y)|
x2
4
-
y2
3
>1
,x∈R,y∈R} 的正數(shù)m的最大值是b,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•重慶一模)已知拋物線y2=2px(p>0)的焦點(diǎn)為橢圓
x2
4
+
y2
3
=1d的右焦點(diǎn),點(diǎn)A、B為拋物線上的兩點(diǎn),O是拋物線的頂點(diǎn),OA⊥OB.
(I)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)求證:直線AB過(guò)定點(diǎn)M(4,0);
(III)設(shè)弦AB的中點(diǎn)為P,求點(diǎn)P到直線x-y=0的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案