【題目】從條件①,②,③,中任選一個,補充到下面問題中,并給出解答.

已知數(shù)列的前項和為,________.若,,成等比數(shù)列,求的值.

【答案】若選擇①,;若選擇②,;若選擇③,.

【解析】

若選擇①,利用可得,可得,再根據(jù)等比中項列方程解得即可;若選擇②,根據(jù)可得,可得,,再根據(jù)等比中項列方程解得即可;若選擇③,利用可得,再根據(jù)等比中項列方程解得即可.

若選擇①,

因為,,所以,

兩式相減得,整理得

,

所以為常數(shù)列.,所以

(或由,利用相乘相消法,求得

所以,,

,,成等比數(shù)列,所以,

所以,解得(舍),

所以

若選擇②,

變形得,

所以,

易知,所以,

所以為等差數(shù)列,又,所以,

,

時,也滿足上式,

所以.

因為,成等比數(shù)列,∴,

,又,∴

若選擇③,

因為,所以

兩式相減得,

整理得

因為,∴,所以是等差數(shù)列,

所以,

,成等比數(shù)列,∴,

,又,∴

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)當時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某機械零件的幾何結(jié)構(gòu),該幾何體是由兩個相同的直四棱柱組合而成的,且前后、左右、上下均對稱,每個四棱柱的底面都是邊長為2的正方形,高為4,且兩個四棱柱的側(cè)棱互相垂直.則這個幾何體有________個面,其體積為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若是函數(shù)的極值點,求a的值;

2)令,若對任意,有恒成立,求a的取值范圍;

3)設(shè)m,n為實數(shù),且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,圖(a)、圖(b)是邊長為的兩塊正方形鋼板,現(xiàn)要將圖(a)裁剪焊接成一個正四棱柱,將圖(b)裁剪焊接成一個正四棱錐,使它們的全面積都等于這個正方形的面積(不計焊接縫的面積).

1)將裁剪方法用虛線標示在圖中,并作簡要說明;

2)比較所制成的正四棱柱和正四棱錐體積大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用數(shù)字01,2,34組成沒有重復(fù)數(shù)字且至少有兩個數(shù)字是偶數(shù)的四位數(shù),則這樣的四位數(shù)的個數(shù)為( )

A.64B.72C.96D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)sin(ωx+φ)ω0|φ|),yf(x)的圖象關(guān)于直線x對稱,且與x軸交點的橫坐標構(gòu)成一個公差為的等差數(shù)列,則函數(shù)f(x)的導(dǎo)函數(shù)的一個單調(diào)減區(qū)間為(

A.[,]B.[]C.[,]D.[,]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓O的直徑AB=2,點CAB的延長線上,BC=1,點P為半圓上異于A,B兩點的一個動點,以點P為直角頂點作等腰直角,且點D與圓心O分布在PC的兩側(cè),設(shè)

1)把線段PC的長表示為的函數(shù);

2)求四邊形ACDP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著食品安全問題逐漸引起人們的重視,有機、健康的高端綠色蔬菜越來越受到消費者的歡迎,同時生產(chǎn)—運輸—銷售一體化的直銷供應(yīng)模式,不僅減少了成本,而且減去了蔬菜的二次污染等問題.

(1)在有機蔬菜的種植過程中,有機肥料使用是必不可少的.根據(jù)統(tǒng)計某種有機蔬菜的產(chǎn)量與有機肥料的用量有關(guān)系,每個有機蔬菜大棚產(chǎn)量的增加量(百斤)與使用堆漚肥料(千克)之間對應(yīng)數(shù)據(jù)如下表

使用堆漚肥料(千克)

2

4

5

6

8

產(chǎn)量的增加量(百斤)

3

4

4

4

5

依據(jù)表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;并根據(jù)所求線性回歸方程,估計如果每個有機蔬菜大棚使用堆漚肥料10千克,則每個有機蔬菜大棚產(chǎn)量增加量是多少百斤?

(2)某大棚蔬菜種植基地將采摘的有機蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價格銷售到生鮮超市.“樂購”生鮮超市以每份15元的價格賣給顧客,如果當天前8小時賣不完,則超市通過促銷以每份5元的價格賣給顧客(根據(jù)經(jīng)驗,當天能夠把剩余的有機蔬菜都低價處理完畢,且處理完畢后,當天不再進貨).該生鮮超市統(tǒng)計了100天有機蔬菜在每天的前8小時內(nèi)的銷售量(單位:份),制成如下表格(注:,且);

前8小時內(nèi)的銷售量(單位:份)

15

16

17

18

19

20

21

頻數(shù)

10

x

16

6

15

13

y

若以100天記錄的頻率作為每日前8小時銷售量發(fā)生的概率,該生鮮超市當天銷售有機蔬菜利潤的期望值為決策依據(jù),當購進17份比購進18份的利潤的期望值大時,求的取值范圍.

附:回歸直線方程為,其中.

查看答案和解析>>

同步練習(xí)冊答案