已知定義在正實(shí)數(shù)集上的連續(xù)函數(shù),則實(shí)數(shù)a的值為    
【答案】分析:由函數(shù)極限定義可知:x→1時(shí)函數(shù)的極限等于f(1),求出函數(shù)的極限列出關(guān)于a的方程,即可求出a.
解答:解:因?yàn)閒(x)是連續(xù)函數(shù),所以=f(1)=1+a,
===-,
所以1+a=-,解得a=-
故答案為:-
點(diǎn)評(píng):此題要求學(xué)生掌握函數(shù)連續(xù)的定義,會(huì)進(jìn)行極限的運(yùn)算.解題時(shí)要正確理解函數(shù)的連續(xù)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在正實(shí)數(shù)集上的函數(shù)f(x)=x2+4ax+1,g(x)=6a2lnx+2b+1,其中a>0.
(Ⅰ)設(shè)兩曲線y=f(x),y=g(x)有公共點(diǎn),且在該點(diǎn)處的切線相同,用a表示b,并求b的最大值;
(Ⅱ)設(shè)h(x)=f(x)+g(x),證明:若a≥
3
-1
,則對(duì)任意x1,x2∈(0,+∞),x1≠x2
h(x2)-h(x1)
x2-x1
>8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在正實(shí)數(shù)集上的函數(shù)f(x)=
12
x2+2ax
,g(x)=3a2lnx+b,其中a>0,設(shè)兩曲線y=f(x),y=g(x)有公共點(diǎn),且在該點(diǎn)處的切線相同.
(Ⅰ)用a表示b,并求b的最大值;
(Ⅱ)求證:f(x)≥g(x)(x>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在正實(shí)數(shù)集上的函數(shù)f(x)滿足①若x>1,則f(x)<0;②f(
12
)
=1;③對(duì)定義域內(nèi)的任意實(shí)數(shù)x,y,都有:f(xy)=f(x)+f(y),則不等式f(x)+f(5-x)≥-2的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在正實(shí)數(shù)集上的連續(xù)函數(shù)f(x)=
1
1-x
+
2
x2-1
(0<x<1)
x+a   (x≥1)
,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•河西區(qū)二模)已知定義在正實(shí)數(shù)集上的函數(shù)f(x)=
3x22
+ax,g(x)=4a2lnx+b,其中a>0,設(shè)兩曲線x=f(x)與f=g(x)有公共點(diǎn),且在公共點(diǎn)處的切線相同.
(I)若a=1,求兩曲線y=f(x)與y=g(x)在公共點(diǎn)處的切線方程;
(Ⅱ)用a表示b,并求b的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案