【題目】設(shè)橢圓E:a,b>0)過M2) ,N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),

1)求橢圓E的方程;

2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,?若存在,寫出該圓的方程,若不存在說明理由.

【答案】12

【解析】

試題(1)因?yàn)闄E圓E:a,b>0)過M2,),N(,1)兩點(diǎn),

所以解得所以橢圓E的方程為

2)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,,設(shè)該圓的切線方程為解方程組,,

△=,

,

要使,需使,,所以,所以,

所以,所以,,

因?yàn)橹本為圓心在原點(diǎn)的圓的一條切線,

所以圓的半徑為,,,

所求的圓為,此時(shí)圓的切線都滿足,

而當(dāng)切線的斜率不存在時(shí)切線為與橢圓的兩個(gè)交點(diǎn)為滿足,

綜上, 存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù),是自然對數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸垂直.

1)求的單調(diào)區(qū)間;

2)設(shè),對任意,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從27日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個(gè)成員檢測呈陽性的概率均為)且相互獨(dú)立,該家庭至少檢測了5個(gè)人才能確定為“感染高危戶”的概率為,當(dāng)時(shí),最大,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】7屆世界軍人運(yùn)動(dòng)會于20191018日至27日在湖北武漢舉行,賽期10天,共設(shè)置射擊、游泳、田徑、籃球等27個(gè)大項(xiàng),329個(gè)小項(xiàng).共有來自100多個(gè)國家的近萬名現(xiàn)役軍人同臺競技.前期為迎接軍運(yùn)會順利召開,武漢市很多單位和部門都開展了豐富多彩的宣傳和教育活動(dòng),努力讓大家更多的了解軍運(yùn)會的相關(guān)知識,并倡議大家做文明公民.武漢市體育局為了解廣大民眾對軍運(yùn)會知識的知曉情況,在全市開展了網(wǎng)上問卷調(diào)查,民眾參與度極高,現(xiàn)從大批參與者中隨機(jī)抽取200名幸運(yùn)參與者,他們得分(滿分100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下:

組別

頻數(shù)

5

30

40

50

45

20

10

1)若此次問卷調(diào)查得分整體服從正態(tài)分布,用樣本來估計(jì)總體,設(shè),分別為這200人得分的平均值和標(biāo)準(zhǔn)差(同一組數(shù)據(jù)用該區(qū)間中點(diǎn)值作為代表),求,的值(,的值四舍五入取整數(shù)),并計(jì)算;

2)在(1)的條件下,為感謝大家參與這次活動(dòng),市體育局還對參加問卷調(diào)查的幸運(yùn)市民制定如下獎(jiǎng)勵(lì)方案:得分低于的可以獲得1次抽獎(jiǎng)機(jī)會,得分不低于的可獲得2次抽獎(jiǎng)機(jī)會,在一次抽獎(jiǎng)中,抽中價(jià)值為15元的紀(jì)念品A的概率為,抽中價(jià)值為30元的紀(jì)念品B的概率為.現(xiàn)有市民張先生參加了此次問卷調(diào)查并成為幸運(yùn)參與者,記Y為他參加活動(dòng)獲得紀(jì)念品的總價(jià)值,求Y的分布列和數(shù)學(xué)期望,并估算此次紀(jì)念品所需要的總金額.

(參考數(shù)據(jù):;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓的圓心為,直線過點(diǎn)且與軸不重合,交圓,兩點(diǎn),過點(diǎn)的平行線交于點(diǎn).

(1)求的值;

(2)設(shè)點(diǎn)的軌跡為曲線,直線與曲線相交于,兩點(diǎn),與直線相交于點(diǎn),試問在橢圓上是否存在一定點(diǎn),使得,,成等差數(shù)列(其中,分別指直線,的斜率).若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年冬,北京霧霾天數(shù)明顯減少,據(jù)環(huán)保局統(tǒng)計(jì)三個(gè)月的空氣質(zhì)量,達(dá)到優(yōu)良的天數(shù)超過天,重度污染的天數(shù)僅有天,主要原因是政府對治理霧霾采取有效措施.如:(1)減少機(jī)動(dòng)車尾氣排放(2)實(shí)施煤改電或煤改氣工程(3)關(guān)停了大量的排污企業(yè)(4)部分企業(yè)季節(jié)性停產(chǎn).為了解農(nóng)村地區(qū)實(shí)施煤改氣工程后天然氣的使用從某鄉(xiāng)鎮(zhèn)隨機(jī)抽取戶,進(jìn)行月均用氣量調(diào)查,得到的用氣量數(shù)據(jù)均在區(qū)間內(nèi),表如下

分組

頻數(shù)

頻率

14

0.14

55

0.55

4

0.04

2

0.02

合計(jì)

100

1

1)求值,若同組內(nèi)的每個(gè)數(shù)據(jù)用該組區(qū)間中點(diǎn)值代替,估計(jì)該鄉(xiāng)鎮(zhèn)每戶平均用氣量;

2)從樣本調(diào)查的用氣量的用戶組中任選2戶,進(jìn)行燃?xì)馐褂脻M意度調(diào)查,求2戶用氣量處于不同區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求曲線的普通方程和直線的直角坐標(biāo)方程;

2)設(shè)直線,軸的交點(diǎn)分別為,若點(diǎn)在曲線位于第一象限的圖象上運(yùn)動(dòng),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位鼓勵(lì)員工參加健身運(yùn)動(dòng),推廣了一款手機(jī)軟件,記錄每人每天走路消耗的卡路里;軟件的測評人員從員工中隨機(jī)地選取了40人(男女各20人),記錄他們某一天消耗的卡路里,并將數(shù)據(jù)整理如下:

(1)已知某人一天的走路消耗卡路里超過180千卡被評測為“積極型”,否則為“懈怠型”,根據(jù)題中數(shù)據(jù)完成下面的列聯(lián)表,并據(jù)此判斷能否有99%以上把握認(rèn)為“評定類型”與“性別”有關(guān)?

(2)若測評人員以這40位員工每日走路所消耗的卡路里的頻率分布來估計(jì)其所有員工每日走路消耗卡路里的頻率分布,現(xiàn)在測評人員從所有員工中任選2人,其中每日走路消耗卡路里不超過120千卡的有人,超過210千卡的有人,設(shè),的分布列及數(shù)學(xué)期望.

附: ,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為F,直線l與拋物線C交于AB兩點(diǎn),O是坐標(biāo)原點(diǎn).

1)若直線l過點(diǎn)F,求直線l的方程;

2)已知點(diǎn),若直線l不與坐標(biāo)軸垂直,且,證明:直線l過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案