在如圖所示三角形中,令第n行的各數(shù)的和為an,得到數(shù){an},則數(shù)列{an}的通項公式為
an=n•2n-1
an=n•2n-1
分析:利用組合數(shù)的性質:k
C
k
n
=k
n!
k!(n-k)!
=n
(n-1)!
(k-1)![(n-1)-(k-1)]!
對所求的式子進行化簡,然后利用組合數(shù)的性質進行求解即可
解答:解:∵k
C
k
n
=k
n!
k!(n-k)!
=n
(n-1)!
(k-1)![(n-1)-(k-1)]!

∴an=Cn1+2Cn2+…+nCnn
=n(Cn-10+Cn-11+Cn-12+…+Cn-1n-1
=n•2n-1
故答案為:n•2n-1
點評:本題主要考查了組合數(shù)的兩個性質①kCnk=nCn-1k-1②Cn0+Cn1+…+Cnn=2n的應用,解題的關鍵是根據(jù)性質對所求的式子進行轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•湖南)某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形的頂點)處都種了一株相同品種的作物.根據(jù)歷年的種植經(jīng)驗,一株該種作物的年收獲量Y(單位:kg)與它的“相近”作物株數(shù)X之間的關系如下表所示:
X 1 2 3 4
Y 51 48 45 42
這里,兩株作物“相近”是指它們之間的直線距離不超過1米.
(Ⅰ)完成下表,并求所種作物的平均年收獲量;
Y 51 48 45 42
頻數(shù)
4
(Ⅱ)在所種作物中隨機選取一株,求它的年收獲量至少為48kg的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示三角形中,令第行的各數(shù)的和為,得到數(shù)列,則數(shù)列的通項公式為                       。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示三角形中,令第行的各數(shù)的和為,得到數(shù)列,則數(shù)列的通項公式為                      

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年湖南省長沙市雅禮中學高三第五次質檢數(shù)學試卷(理科)(解析版) 題型:填空題

在如圖所示三角形中,令第n行的各數(shù)的和為an,得到數(shù){an},則數(shù)列{an}的通項公式為   

查看答案和解析>>

同步練習冊答案