【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)函數(shù)f′(x),對(duì)于任意的實(shí)數(shù)x,都有f(x)=4x2﹣f(﹣x),當(dāng)x∈(﹣∞,0)時(shí),f′(x)+ <4x,若f(m+1)≤f(﹣m)+4m+2,則實(shí)數(shù)m的取值范圍是( )
A.[﹣ ,+∞)
B.[﹣ ,+∞)
C.[﹣1,+∞)
D.[﹣2,+∞)

【答案】A
【解析】解:∵f(x)=4x2﹣f(﹣x),

∴f(x)﹣2x2+f(﹣x)﹣2x2=0,

設(shè)g(x)=f(x)﹣2x2,則g(x)+g(﹣x)=0,

∴函數(shù)g(x)為奇函數(shù).

∵x∈(﹣∞,0)時(shí),f′(x)+ <4x,

g′(x)=f′(x)﹣4x<﹣ ,

故函數(shù)g(x)在(﹣∞,0)上是減函數(shù),

故函數(shù)g(x)在(0,+∞)上也是減函數(shù),

若f(m+1)≤f(﹣m)+4m+2,

則f(m+1)﹣2(m+1)2≤f(﹣m)﹣2m2,

即g(m+1)<g(﹣m),

∴m+1≥﹣m,解得:m≥﹣ ,

所以答案是:A.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線.

(1)若直線軸上的截距為-2,求實(shí)數(shù)的值,并寫出直線的截距式方程;

(2)若過(guò)點(diǎn)且平行于直線的直線的方程為: ,求實(shí)數(shù)的值,并求出兩條平行直線之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,PA= a,AD=2a.

(1)若AE⊥PD,E為垂足,求異面直線AE與CD所成角的余弦值;
(2)求平面PAB與平面PCD所成的銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷函數(shù)的奇偶性,并說(shuō)明理由;

(3)若函數(shù),求函數(shù)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓A:(x+1)2+y2=8,動(dòng)圓M經(jīng)過(guò)點(diǎn)B(1,0),且與圓A相切,O為坐標(biāo)原點(diǎn).
(Ⅰ)求動(dòng)圓圓心M的軌跡C的方程;
(Ⅱ)直線l與曲線C相切于點(diǎn)M,且l與x軸、y軸分別交于P、Q兩點(diǎn),若 ,且λ∈[ ,2],求△OPQ面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ x2﹣x+a(a∈R)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(Ⅰ)求a的取值范圍;
(Ⅱ)設(shè)兩個(gè)極值點(diǎn)分別為x1 , x2 , 證明:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCD-A1B1C1D1E,FP,Q,MN分別是棱AB,ADDD1,BB1A1B1,A1D1的中點(diǎn).求證

(1)直線BC1∥平面EFPQ.

(2)直線AC1⊥平面PQMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: 的右焦點(diǎn)為F(1,0),且點(diǎn)(﹣1, )在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本l過(guò)點(diǎn)F,且與橢圓C交于A,B兩點(diǎn),試問(wèn)x軸上是否存在定點(diǎn)Q,使得 恒成立?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】衡州市臨棗中學(xué)高二某小組隨機(jī)調(diào)查芙蓉社區(qū)160個(gè)人,以研究這一社區(qū)居民在20:00﹣22:00時(shí)間段的休閑方式與性別的關(guān)系,得到下面的數(shù)據(jù)表:

休閑方式
性別

看電視

看書

合計(jì)

20

100

120

20

20

40

合計(jì)

40

120

160

下面臨界值表:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828


(Ⅰ)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時(shí)間段以看書為休閑方式的人數(shù)為隨機(jī)變量X,求X的分別列和期望;
(Ⅱ)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00﹣22:00時(shí)間段的休閑方式與性別有關(guān)系”?

查看答案和解析>>

同步練習(xí)冊(cè)答案