分析 (1)推導(dǎo)出AE⊥BC,AE⊥BF,由此能證明AE⊥平面BCE.
(2)推導(dǎo)出CE⊥BF,F(xiàn)G∥AE,由此能證明AE∥平面BFD.
(3)由VCBFG=VGBCF,能求出三棱錐C-BFG的體積.
解答 證明:(1)∵AD⊥平面ABE,AD∥BC,
∴BC⊥平面ABE,
又AE?平面ABE,∴AE⊥BC,
又∵BF⊥平面ACE,AE?平面ACE,∴AE⊥BF,
∵BC∩BF=B,且BC,BF平面BCE,
∴AE⊥平面BCE.…(4分)
(2)∵矩形ABCD中,AC與BD交于點(diǎn)G.
∴依題意可知點(diǎn)G是AC的中點(diǎn).
由BF⊥平面ACE,知CE⊥BF
而BC=BE,∴點(diǎn)F是EC中點(diǎn).
∴在△AEC中,F(xiàn)G∥AE
又∵FG?平面BFD,AE?平面BFD
∴AE∥平面BFD…(8分)
解:(3)∵AE∥FG且AE⊥平面BCE
∴FG⊥平面BCE,即FG⊥平面BCF
∵點(diǎn)G是AC中點(diǎn),F(xiàn)是CE中點(diǎn),
∴FG=$\frac{1}{2}$AE=1
又知RtBCE中,CE=$\sqrt{2}BE$=$2\sqrt{2}$
BF=CF=$\frac{1}{2}$CE=$\sqrt{2}$
所以SBCF=$\frac{1}{2}×\sqrt{2}×\sqrt{2}$=1
所以VCBFG=VGBCF=$\frac{1}{3}$SBCFFG=$\frac{1}{3}$…(12分)
點(diǎn)評 本題考查線面垂直、線面平行的證明,考查三棱錐的體積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽六安一中高一上國慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)在上單調(diào)遞增,則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有相等的焦距,相同的焦點(diǎn) | B. | 有不同的焦距,不同的焦點(diǎn) | ||
C. | 有相等的焦距,不同的焦點(diǎn) | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{10}}}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{{\sqrt{10}}}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com