分析 (1)由等差數(shù)列的求和公式和等比數(shù)列可得關(guān)于a1的方程,解方程可得a1.然后根據(jù)等差數(shù)列的通項(xiàng)公式進(jìn)行解答;
(2)由已知:bn=$\frac{{a}_{n}}{{2}^{n}}$,由此利用錯(cuò)位相減法能求出數(shù)列{bn}的前n項(xiàng)和Tn.
解答 解:(1)依題意得:S1+1=a1+1,S2=2a1+2,S3-1=3a1+6-1=3a1+5.
∵S1+1,S2,S3-1成等比數(shù)列,
∴(2a1+2)2=(a1+1)(3a1+5),
解得a1=1或a1=-1.
∵數(shù)列{an}是正項(xiàng)數(shù)列,
∴a1=1,
∴an=2n-1.
(2)由(1)知,an=2n-1.則bn=$\frac{{a}_{n}}{{2}^{n}}$=$\frac{2n-1}{{2}^{n}}$,
則數(shù)列{bn}的前n項(xiàng)和為T(mén)n=$\frac{1}{2}$+$\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+…+$\frac{2n-3}{{2}^{n-1}}$+$\frac{2n-1}{{2}^{n}}$,①
所以$\frac{1}{2}$Tn=$\frac{1}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+$\frac{5}{{2}^{4}}$+…+$\frac{2n-3}{{2}^{n}}$+$\frac{2n-1}{{2}^{n+1}}$,②
由①-②得:$\frac{1}{2}$Tn=$\frac{1}{2}$+2($\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{n}}$)-$\frac{2n-1}{{2}^{n+1}}$=$\frac{1}{2}$+2×$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-$\frac{2n-1}{{2}^{n+1}}$=$\frac{3}{2}$-$\frac{1}{{2}^{n-1}}$-$\frac{2n-1}{{2}^{n+1}}$.
故Tn=3-$\frac{1}{{2}^{2-n}}$-$\frac{2n-1}{{2}^{n}}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意錯(cuò)位相減法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a=18,B=30°,A=120° | B. | a=60,c=48,C=120° | ||
C. | a=3,b=6,A=30° | D. | a=14,b=15,A=45° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 17.3 | B. | 17.5 | C. | 18.2 | D. | 18.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,4] | B. | [0,16] | C. | [-2,2] | D. | [1,4] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com