橢圓與雙曲線有許多優(yōu)美的對偶性質(zhì),對于橢圓有如下命題:已知A,F(xiàn),B分別是優(yōu)美橢圓=1(a>b>0)(離心率為黃金分割比的橢圓)的左頂點、右焦點和上頂點,則AB⊥BF,那么對于雙曲線則有如下命題:已知A,F(xiàn),B分別是優(yōu)美雙曲線=1(a>b>0)(離心率為黃金分割比的倒數(shù)的雙曲線)的左頂點、右焦點和其虛軸的上端點,則有

[  ]
A.

AB⊥BF

B.

AF⊥BF

C.

AB⊥AF

D.

AB∥BF

答案:A
解析:

根據(jù)類比推理的方法可以得到結(jié)論是AB⊥BF,也可利用雙曲線的相關(guān)知識進行證明.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓與雙曲線有許多優(yōu)美的對偶性質(zhì),如對于橢圓有如下命題:AB是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的不平行于對稱軸且不過原點的弦,M為AB的中點,則kOM•kAB=-
b2
a2
.那么對于雙曲線則有如下命題:AB是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的不平行于對稱軸且不過原點的弦,M為AB的中點,則kOM•kAB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓與雙曲線有許多優(yōu)美的對偶性質(zhì),對于橢圓有如下命題:已知A、F、B分別是優(yōu)美橢圓
x2
a2
+
y2
b2
=1(a>b>0)(離心率為黃金分割比
5
-1
2
的橢圓)的左頂點、右焦點和上頂點,則AB⊥BF.那么對于雙曲線則有如下命題:已知A、F、B分別是優(yōu)美雙曲線
x2
a2
-
y2
b2
=1(a>b>0)(離心率為黃金分割比的倒數(shù)
5
+1
2
的雙曲線)的左頂點、右焦點和其虛軸的上端點,則有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年吉林省高考數(shù)學(xué)仿真模擬試卷3(理科)(解析版) 題型:解答題

橢圓與雙曲線有許多優(yōu)美的對偶性質(zhì),如對于橢圓有如下命題:AB是橢圓+=1(a>b>0)的不平行于對稱軸且不過原點的弦,M為AB的中點,則kOM•kAB=-.那么對于雙曲線則有如下命題:AB是雙曲線-=1(a>0,b>0)的不平行于對稱軸且不過原點的弦,M為AB的中點,則kOM•kAB=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)總復(fù)習(xí)備考綜合模擬試卷(2)(解析版) 題型:解答題

橢圓與雙曲線有許多優(yōu)美的對偶性質(zhì),如對于橢圓有如下命題:AB是橢圓+=1(a>b>0)的不平行于對稱軸且不過原點的弦,M為AB的中點,則kOM•kAB=-.那么對于雙曲線則有如下命題:AB是雙曲線-=1(a>0,b>0)的不平行于對稱軸且不過原點的弦,M為AB的中點,則kOM•kAB=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年《龍門亮劍》高三數(shù)學(xué)(文科)一輪復(fù)習(xí):第1章第5節(jié)(人教AB通用)(解析版) 題型:選擇題

橢圓與雙曲線有許多優(yōu)美的對偶性質(zhì),對于橢圓有如下命題:已知A、F、B分別是優(yōu)美橢圓+=1(a>b>0)(離心率為黃金分割比的橢圓)的左頂點、右焦點和上頂點,則AB⊥BF.那么對于雙曲線則有如下命題:已知A、F、B分別是優(yōu)美雙曲線-=1(a>b>0)(離心率為黃金分割比的倒數(shù)的雙曲線)的左頂點、右焦點和其虛軸的上端點,則有( )
A.AB⊥BF
B.AF⊥BF
C.AB⊥AF
D.AB∥BF

查看答案和解析>>

同步練習(xí)冊答案