精英家教網 > 高中數學 > 題目詳情

設函數,對任意,恒成立,則實數的取值范圍是       

 

【答案】

.

【解析】

試題分析:因為函數,對任意,

從而解得實數m的取值范圍是,填寫

考點:本試題主要考查了函數的單調性的運用。

點評:解決該試題的關鍵是要對于不等式的恒成立問題要轉換為分離參數的思想求解函數的最值。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設 A、B、C是直線l上的三點,向量
OA
,
OB
,
OC
滿足關系:
OA
+(y-
3
sinxcosx)
OB
-(
1
2
+sin2x)
OC
=
0

(Ⅰ)化簡函數y=f(x)的表達式;
(Ⅱ)若函數g(x)=f(
1
2
x+
π
3
)
,x∈[0,
12
]
的圖象與直線y=b的交點的橫坐標成等差數列,試求實數b的值;
(Ⅲ)令函數h(x)=
2
(sinx+cosx)+sin2x-a,若對任意的x1x2∈[0,
π
2
]
,不等式h(x1)≤f(x2)恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+c(a,b,c∈R且a≠0),f′(x)是它的導函數,且對任意的x∈R,f′(x)=f(x+1)+x2恒成立.
(1)求f(x)的解析表達式;
(2)設t>0,曲線C:y=f(x)在點P(t,f(t))處的切線為l,l與坐標軸圍成的三角形面積為S(t),求S(t)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

等差數列{a}是遞增數列,前n項和為Sn,且a1,a2,a5成等比數列,S5=a32
(1)求通項an;
(2)令bn=
1
2
(
an+1
an
+
an
an+1
)
,設Tn=b1+b2+…+bn-n,若M>Tn>m對一切正整數n恒成立,求實數M、m的取值范圍;
(3)試構造一個函數g(x),使f(n)=a1g(1)+a2g(2)+…+ang(n)<
1
3
(n∈N+)
恒成立,且對任意的m∈(
1
4
,
1
3
)
,均存在正整數N,使得當n>N時,f(n)>m.

查看答案和解析>>

科目:高中數學 來源:2012屆天津市高三第一次月考理科數學試卷 題型:解答題

已知是二次函數,是它的導函數,且對任意的恒成立

(Ⅰ)求的解析式;

(Ⅱ)設,曲線在點處的切線為與坐標軸圍成的三角形面積為,求的最小值。

 

查看答案和解析>>

科目:高中數學 來源:2009-2010學年度新課標高二上學期數學單元測試4 題型:解答題

 

    (理)如圖,平面ADEF⊥平面ABCD,ABCD與ADEF均為矩形,且AB:AD:AF=

 
2:2:;P為線段EF上一點,M為AB的中點,若PC與BD所成的角為

60°.

   (1)試確定P點位置;

   (2)求二面角P—MC—D的大小的余弦值;

   (3)當AB長為多少時,點D到平面PMC的距離等于?

 

 

 

 

(文)設函數),其中

(Ⅰ)當時,求曲線在點處的切線方程;

(Ⅱ)當時,求函數的極大值和極小值;

(Ⅲ)當時,證明存在,使得不等式對任意的恒成立.

 

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案