(2011•杭州一模)設(shè)函數(shù)f(x)=x2+(2a+1)x+a2+3a(a∈R).
(I)若f(x)在[0,2]上的最大值為0,求a的值;
(II)若f(x)在閉區(qū)間[α,β]上單調(diào),且{y|y=f(x),α≤x≤β}=[α,β],求α的取值范圍.
分析:(Ⅰ)根據(jù)對稱軸的位置,利用二次函數(shù)的單調(diào)性求出該二次函數(shù)在閉區(qū)間上的最大值,再由最大值為0,求出a的值.
(Ⅱ) 若f(x)在[α,β]上遞增,則有(1)-
2a+1
2
≤α
;(2)
f(α)=α
f(β)=β
,即方程f(x)=x在[-
2a+1
2
,+∞)上有兩個不相等的實根,由
-
2a+1
2
<-a
△>0
g(-
2a+1
2
)≥0
求得a的取值范圍.若f(x)在[α,β]上遞減,同理求得a的取值范圍.再把a(bǔ)的取值范圍取并集,即得所求.
解答:解:(Ⅰ) 當(dāng)-
2a+1
2
≤1
,即:a≥-
3
2
時,f(x)max=f(2)=a2+7a+6=0
故 a=-6(舍去),或a=-1;
當(dāng)-
2a+1
2
>1
,即:a<-
3
2
時,f(x)max=f(0)=a2+3a=0
故a=0(舍去)或a=-3.
綜上得:a的取值為:a=-1或a=-3. (5分)
(Ⅱ) 若f(x)在[α,β]上遞增,則滿足:(1)-
2a+1
2
≤α
;(2)
f(α)=α
f(β)=β
,
即方程f(x)=x在[-
2a+1
2
,+∞)上有兩個不相等的實根.
方程可化為x2+2ax+a2+3a=0,設(shè)g(x)=x2+2ax+a2+3a,
-
2a+1
2
<-a
△>0
g(-
2a+1
2
)≥0
,解得:-
1
12
≤a<0
.     (5分)
若f(x)在[α,β]上遞減,則滿足:
(1)-
2a+1
2
≥β
;(2)
f(α)=β
f(β)=α

α2+(2a+1)α+a2+3a=β
β2+(2a+1)β+a2+3a=α
得,兩式相減得(α-β)(α+β)+(2a+1)(α-β)=β-α,即α+β+2a+1=-1.
即β=-α-2a-2.
∴α2+(2a+1)α+a2+3a=-α-2a-2,即α2+(2a+2)α+a2+5a+2=0.
同理:β2+(2a+2)β+a2+5a+2=0.
即方程x2+(2a+2)x+a2+5a+2=0在(-∞,-
2a+1
2
]
上有兩個不相等的實根.
設(shè)h(x)=x2+(2a+2)x+a2+5a+2,則
-
2a+1
2
>-a-1
△>0
h(-
2a+1
2
)≥0
,解得:-
5
12
≤a<-
1
3
.    (5分)
綜上所述:a∈[-
5
12
,-
1
3
)∪[-
1
12
,0)
點評:本題主要考查了一元二次方程的根的分布與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•杭州一模)設(shè)α∈(0, 
π
2
)
.若tanα=
1
3
,則cosα=
3
10
10
3
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•杭州一模)已知點O為△ABC的外心,角A,B,C的對邊分別滿足a,b,c,
(I)若3
OA
+4
OB
+5
OC
=
0
,求cos∠BOC的值;
(II)若
CO
AB
=
BO
CA
,求
b2+c2
a2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•杭州一模)設(shè)函數(shù)f(x)=x-2sinx是區(qū)間[t,t+
π
2
]上的增函數(shù),則實數(shù)t的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•杭州一模)已知等比數(shù)列{an}的公比大于1,Sn是數(shù)列{an}的前n項和,S3=39,且a1
2
3
a2
,
1
3
a3
依次成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(II)若數(shù)列{bn}滿足:b1=3,bn=an
1
a1
+
1
a2
+…+
1
an-1
)(n≥2),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•杭州一模)設(shè)函數(shù)f(x)=
2+log3x,x>0
3-log2(-x),x<0
,則f(
3
)+f(-
2
)=( 。

查看答案和解析>>

同步練習(xí)冊答案