,=b=c,當c=λa+μb(λ,μR),且λ+μ=1時,點C

    A.線段AB                          B.直線AB

    C.直線AB上,但除去點A                D.直線AB上,但除去點B

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

f(x)=λ1(
a
3
x3+
b-1
2
x2+x)+λ2x•3x(a,b∈R,a>0)

(1)當λ1=1,λ2=0時,設x1,x2是f(x)的兩個極值點,
①如果x1<1<x2<2,求證:f'(-1)>3;
②如果a≥2,且x2-x1=2且x∈(x1,x2)時,函數(shù)g(x)=f'(x)+2(x-x2)的最小值為h(a),求h(a)的最大值.
(2)當λ1=0,λ2=1時,
①求函數(shù)y=f(x)-3(ln3+1)x的最小值.
②對于任意的實數(shù)a,b,c,當a+b+c=3時,求證3aa+3bb+3cc≥9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)fn(x)=xn+bx+c(n∈N+,b,c∈R)
(Ⅰ)當b>0時,判斷函數(shù)fn(x)在(0,+∞)上的單調(diào)性;
(Ⅱ)設n≥2,b=1,c=-1,證明:fn(x)在區(qū)間(
12
,1)
內(nèi)存在唯一的零點;
(Ⅲ)設n=2,若對任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:013

    =b,=c,當c=λa+μb(λ,μR),且λ+μ=1時,點C

    A.線段AB                          B.直線AB

    C.直線AB上,但除去點A                D.直線AB上,但除去點B

 

查看答案和解析>>

科目:高中數(shù)學 來源:同步題 題型:單選題

設a,b,c是空間的三條直線,α,β是空間的兩個平面,則下列命題的逆命題不成立的是
[     ]
A.當c⊥α時,若c⊥β,則α∥β
B.當bα,且cα時,若c∥α,則b∥c
C.當bα,且c是a在α內(nèi)的射影時,若b⊥c,則a⊥b
D.當bα時,若b⊥β,則α⊥β

查看答案和解析>>

同步練習冊答案