如圖是一幾何體的平面展開圖,其中ABCD為正方形,E、F

分別為PA、PD的中點。在此幾何體中,給出下面四個結論:

(1)直線BE 與直線CF異面;     (2)直線BE與直線AF異面

(3)直線EF//平面PBC            (4)平面BCE平面PAD

其中正確的有:

A 、(2)(3)       B、(1)(2)     C、(2)(4)    D、(1)(4)

 

【答案】

A

【解析】如圖所示,BE ∥CF,直線BE與直線AF異面,由EF// BC得EF//平面PBC,故選A

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•黃岡模擬)如圖是一幾何體的平面展開圖,其中ABCD為正方形,E、F分別為PA、PD的中點.在此幾何體中,給出下面四個結論:
①直線BE與直線CF異面;
②直線BE與直線AF異面;
③直線EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正確的命題的個數(shù)是
2
2
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是一幾何體的平面展開圖,其中四邊形ABCD為正方形,E、F分別為PA、PD的中點,在此幾何體中,給出下面四個結論:①直線BE與直線CF是異面直線;②直線BE與直線AF是異面直線;③直線EF∥平面PBC;④平面BCE⊥平面PAD.其中正確結論的序號是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是一幾何體的平面展開圖,其中ABCD為正方形,E、F

分別為PA、PD的中點。在此幾何體中,給出下面四個結論:

(1)直線BE 與直線CF異面;     (2)直線BE與直線AF異面

(3)直線EF//平面PBC            (4)平面BCE平面PAD

其中正確的有:

A 、(2)(3)       B、(1)(2)     C、(2)(4)    D、(1)(4)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省金華市蘭溪三中高二(上)期中數(shù)學試卷(文科)(解析版) 題型:填空題

如圖是一幾何體的平面展開圖,其中ABCD為正方形,E、F分別為PA、PD的中點.在此幾何體中,給出下面四個結論:
①直線BE與直線CF異面;
②直線BE與直線AF異面;
③直線EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正確的命題的個數(shù)是    個.

查看答案和解析>>

同步練習冊答案