甲、乙兩射手在同一條件下進行射擊,分布列如下:射手甲擊中環(huán)數8,9,10的概率分別為0.2,0.6,0.2;射手乙擊中環(huán)數8,9,10的概率分別為0.4,0.2,0.4.用擊中環(huán)數的期望與方差比較兩名射手的射擊水平.
科目:高中數學 來源: 題型:解答題
某聯歡晚會舉行抽獎活動,舉辦方設置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得2分;方案乙的中獎率為,中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結束后憑分數兌換獎品.
(1)張三選擇方案甲抽獎,李四選擇方案乙抽獎,記他們的累計得分為X,若X≤3的概率為,求;
(2)若張三、李四兩人都選擇方案甲或都選擇方案乙進行抽獎,問:他們選擇何種方案抽獎,累計得分的數學期望較大?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
為調查某社區(qū)居民的業(yè)余生活狀況,研究這一社區(qū)居民在20:00-22:00時間段的休閑方式與性別的關系,隨機調查了該社區(qū)80人,得到下面的數據表:
休閑方式 性別 | 看電視 | 看書 | 合計 |
男 | 10 | 50 | 60 |
女 | 10 | 10 | 20 |
合計 | 20 | 60 | 80 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
甲、乙兩人各擲一次骰子(均勻的正方體,六個面上分別為1,2,3,4,5,6點),所得點數分別為x,y
(1)求x<y的概率;
(2)求5<x+y<10的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
小明家訂了一份報紙,寒假期間他收集了每天報紙送達時間的數據,并繪制成頻率分布直方圖,如圖所示.
(1)根據圖中的數據信息,求出眾數和中位數(精確到整數分鐘);
(2)小明的父親上班離家的時間在上午之間,而送報人每天在時刻前后半小時內把報紙送達(每個時間點送達的可能性相等),求小明的父親在上班離家前能收到報紙(稱為事件)的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某中學在高一開設了數學史等4門不同的選修課,每個學生必須選修,且只能從中選一門.該校高一的3名學生甲、乙、丙對這4門不同的選修課的興趣相同.
(1)求3個學生選擇了3門不同的選修課的概率;
(2)求恰有2門選修課這3個學生都沒有選擇的概率;
(3)設隨機變量X為甲、乙、丙這三個學生選修數學史這門課的人數,求X的分布列.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某選修課的考試按A級、B級依次進行,只有當A級成績合格時,才可繼續(xù)參加B級的考試.已知每級考試允許有一次補考機會,兩個級別的成績均合格方可獲得該選修課的合格證書.現某人參加這個選修課的考試,他A級考試成績合格的概率為,B級考試合格的概率為.假設各級考試成績合格與否均互不影響.
(1)求他不需要補考就可獲得該選修課的合格證書的概率;
(2)在這個考試過程中,假設他不放棄所有的考試機會,記他參加考試的次數為,求的數學期望E.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
將一顆質地均勻的正方體骰子(六個面的點數分別為1,2,3,4,5,6)先后拋擲兩次,將得到的點數分別記為.
(1)求直線與圓相切的概率;
(2)將的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
甲乙兩人進行乒乓球比賽,各局相互獨立,約定每局勝者得1分,負者得0分,如果兩人比賽五局,乙得1分與得2分的概率恰好相等.
求乙在每局中獲勝的概率為多少?
假設比賽進行到有一人比對方多2分或打滿6局時停止,用表示比賽停止時已打局數,求的期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com