分析 對(duì)任意的x∈(0,1),f(x)的值域?yàn)椋?a,+∞),要使?x2∈R,使f(x1)=g(x2),則g(x)的值域B應(yīng)滿足(2a,+∞)⊆B,對(duì)a進(jìn)行分類討論,得出a的范圍.
解答 解:當(dāng)x∈(0,1)時(shí),f(x)=ax+$\frac{a}{x}$為減函數(shù),
由f(1)=2a得:f(x)的值域?yàn)椋?a,+∞),
若若對(duì)?x1∈(0,1),存在x2∈(1,+∞),使得方程f(x1)=g(x2)總有解,
則g(x)的值域B應(yīng)滿足(2a,+∞)⊆B,
令g′(x)=ex-3a=0,則ex=3a,即x=ln3a,
若ln3a≤1,即3a≤e,
此時(shí)g(x)>g(1)=e-3a,
此時(shí)由e-3a≤2a得:$\frac{e}{5}$≤a≤$\frac{e}{3}$,
若ln3a>1,即3a>e,
g(x)=(1,ln3a)上為減函數(shù),在(ln3a,+∞)上為增函數(shù),
此時(shí)當(dāng)x=ln3a時(shí),函數(shù)取最小值3a(1-ln3a)<0<2a滿足條件;
綜上可得:實(shí)數(shù)a的取值范圍為[$\frac{e}{5}$,+∞)
故答案為:[$\frac{e}{5}$,+∞).
點(diǎn)評(píng) 本題考查了全稱命題,對(duì)數(shù)函數(shù)的圖象和性質(zhì),利用導(dǎo)數(shù)研究函數(shù)的最值,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 6或7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com