【題目】函數(shù)f(x)=Asin(ωx-)+1(A>0, ω>0)與ω=cosωx的部分圖象如圖所示。

(1)求A,a,b的值及函數(shù)f(x)的遞增區(qū)間;

(2)若函數(shù)y= g(x-m)(m>)與y= f(x)+ f(x-)的圖象的對稱軸完全相同,求m的最小值.

【答案】(1);(2)

【解析】試題分析:(1)由題意,得曲線的圖象,的圖象,求得的值,進(jìn)而求得函數(shù)的解析式,即求解的單調(diào)區(qū)間;

(2)由(1)得的解析式,根據(jù)圖象的對稱軸相同,得到,即可得到實(shí)數(shù)的最小值

試題解析:

(1)由圖可知,曲線C1為的圖象,C2為f(x)的圖象,

則A=3-1=2,T=,∴T==,=2.

∴f (x)=2sin(2x-)+1,令2x-=得x=,∴a=,b=a+=

令-+2k≤2x-+2k,解得-+k≤x≤+k

故f(x)的遞增區(qū)間為[k+]

(2)∵g(x)=cos2x,∴g(x-m)=cos(2x-2m),

f(x)+ f(x-)=2+2sin(2x-)-2cos(2x-)=2+2(2x--

=2+2(2x-

令2x-2m=k得y=g(x-m)的圖象的對稱軸方程為x=m+

令2x-=+k得y= f(x)+ f(x-)的圖象的對稱軸方程為

x =+∴m=+

∴m>, ∴m的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知標(biāo)有1~20號的小球20,若我們的目的是估計(jì)總體號碼的平均值,20個小球號碼的平均值.試驗(yàn)者從中抽取4個小球,以這4個小球號碼的平均值估計(jì)總體號碼的平均值,按下面方法抽樣(按小號到大號排序):

(1)以編號2為起點(diǎn),系統(tǒng)抽樣抽取4個球,則這4個球的編號的平均值為____.

(2)以編號3為起點(diǎn),系統(tǒng)抽樣抽取4個球,則這4個球的編號的平均值為____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,記f(x)的最大值為A.
(1)求f′(x);
(2)求A;
(3)證明:|f′(x)|≤2A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下命題:

(1)若;,則為真,為假,為真

(2)“”是“曲線表示橢圓”的充要條件

(3)命題“若,則”的否命題為:“若,則

(4)如果將一組數(shù)據(jù)中的每一個數(shù)都加上同一個非零常數(shù),那么這組數(shù)據(jù)的平均數(shù)和方差都改變;

則正確命題有( )個

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某便利店計(jì)劃每天購進(jìn)某品牌鮮奶若干件,便利店每銷售一瓶鮮奶可獲利元;若供大于求,剩余鮮奶全部退回,但每瓶鮮奶虧損元;若供不應(yīng)求,則便利店可從外調(diào)劑,此時(shí)每瓶調(diào)劑品可獲利.

(1)若便利店一天購進(jìn)鮮奶瓶,求當(dāng)天的利潤單位:元關(guān)于當(dāng)天鮮奶需求量單位:瓶,的函數(shù)解析式;

(2)便利店記錄了天該鮮奶的日需求量單位:瓶,整理得下表:

日需求量

頻數(shù)

若便利店一天購進(jìn)瓶該鮮奶,以天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天利潤在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, .

(Ⅰ)證明: ;

(Ⅱ)平面 平面, ,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是首項(xiàng)為正數(shù)的等比數(shù)列,公比為q,則“q<0”是“對任意的正整數(shù)n,a2n1+a2n<0”的條件.(填“充要條件、充分不必要條件、必要不充分條件、即不充分也不必要條件”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角中,A、B、C分別為三邊a,b,c所對的角。若,且a+c的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)在第1年初購買一臺價(jià)值為120萬元的設(shè)備M,M的價(jià)值在使用過程中逐年減少,從第2年到第6年,每年初M的價(jià)值比上年初減少10萬元;從第7年開始,每年初M的價(jià)值為上年初的75%.

(1)求第n年初M的價(jià)值an的表達(dá)式;

(2)設(shè)An.An大于80萬元,則M繼續(xù)使用,否則須在第n年初對M更新.證明:須在第9年初對M更新.

查看答案和解析>>

同步練習(xí)冊答案