已知為空間四邊形的邊上的點(diǎn),且,求證:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分) 如圖,在直三棱柱中,、分別是、的中點(diǎn),點(diǎn)在上,。
求證:(1)EF∥平面ABC;
(2)平面平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,P在對(duì)角線A1C1上,記二面角P-AB-C為α,二面角P-BC-A為β。
(1)當(dāng)A1P:PC1=1:3時(shí),求cos(α+β)的大小。
(2)點(diǎn)P是線段A1C1(包括端點(diǎn))上的一個(gè)動(dòng)點(diǎn),問:當(dāng)點(diǎn)P在什么位置時(shí),α+β有最小值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
如圖,四棱錐的側(cè)面垂直于底面,,,,在棱上,是的中點(diǎn),二面角為
(1)求的值;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)
在長(zhǎng)方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E的棱AB上移動(dòng)。
(I)證明:D1EA1D;
(II)AE等于何值時(shí),二面角D1-EC-D的大小為。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
如圖,在底面是正方形的四棱錐中,面,交于點(diǎn),是中點(diǎn),為上一點(diǎn).
⑴求證:;
⑵確定點(diǎn)在線段上的位置,使//平面,并說明理由.
⑶當(dāng)二面角的大小為時(shí),求與底面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)如圖(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分別為AC ,AD ,DE的中點(diǎn),現(xiàn)將△ACD沿CD折起,使平面ACD平面CBED,如圖(乙).
(1)求證:平面FHG//平面ABE;
(2)記表示三棱錐B-ACE 的體積,求的最大值;
(3)當(dāng)取得最大值時(shí),求二面角D-AB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分) 如圖,用一付直角三角板拼成一直二面角A—BD—C,若其中給定 AB="AD" =2,,,
(Ⅰ)求三棱錐A-BCD的體積;
(Ⅱ)求點(diǎn)A到BC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)如圖①,,分別是直角三角形邊和的中點(diǎn),,沿將三角形折成如圖②所示的銳二面角,若為線段中點(diǎn).求證:
(1)直線平面;
(2)平面平面.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com