(本小題滿分14分)如圖,建立平面直角坐標系,軸在地平面上,軸垂直于地
平面,單位長度為1千米,某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程表示的曲線上,其中與發(fā)射方向有關(guān),炮的射程是指炮彈落地點的橫坐標.
(1)求炮的最大射程;
(2)設(shè)在第一象限有一飛行物(忽略其大。,其飛行高度為3.2千米,試問它的橫坐標不超過多少時,炮彈可以擊中它?請說明理由.

解:(1)在中,令,得。
由實際意義和題設(shè)條件知。
,當且僅當時取等號。
∴炮的最大射程是10千米!7分
(2)∵,∴炮彈可以擊中目標等價于存在,使成立,
即關(guān)于的方程有正根。
,對稱軸
∴只須。
∴當不超過6千米時,炮彈可以擊中目標!14分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
某風(fēng)景區(qū)有40輛自行車供游客租賃使用,管理這些自行車的費用是每日72元。根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛。為了便于結(jié)算,每輛自行車的日租金(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費用,用(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費用后的所得)。
(1)求函數(shù)的解析式及其定義域;
(2)試問當每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度(單位:cm)滿足關(guān)系:,若不建隔熱層,每年能源消耗費用為8萬元.設(shè)為隔熱層建造費用與20年的能源消耗費用之和.
(Ⅰ)求的值及的表達式;
(Ⅱ)隔熱層修建多厚時,總費用達到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
某漁業(yè)公司年初用98萬元購買一艘捕魚船,第一年各種支出費用12萬元,以后每年都增加
4萬元,每年捕魚收益50萬元.
(1)該公司第幾年開始獲利?
(2)若干年后,有兩種處理方案:
①年平均獲利最大時,以26萬元出售該漁船;
②總純收入獲利最大時,以8萬元出售漁船.
問哪種處理方案最合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)
(2)求值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
畫出函數(shù)的圖像,并指出它的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)在如圖給定的直角坐標系內(nèi)畫出的圖像;

(2)寫出的單調(diào)遞增區(qū)間及值域;
(3)求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
已知函數(shù).
⑴判斷函數(shù)的奇偶性,并證明;
⑵利用函數(shù)單調(diào)性的定義證明:是其定義域上的增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15分)經(jīng)市場調(diào)查,某超市的一種小商品在過去的近20天內(nèi)的銷售量(件)與價格(元)均為時間(天)的函數(shù),且銷售量近似滿足函數(shù)(件),價格近似滿足函數(shù)
(元)。
(1)試寫出該種商品的日銷售額函數(shù)表達式;
(2)求該種商品的日銷售額的最大值與最小值。

查看答案和解析>>

同步練習(xí)冊答案